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CHAPTER  2

2.4 Brillouin Zones of Cubic Lattices

Introduction 

Similar  to Section  1.6,  in  this  last  section  of  the  3D graphics  chapter,  we will  deal  with a  larger  example.  We will  have  to
implement a fair amount of functions to deal with this subject. We will on the way, as well at the final stages, make heavy use
of  visualizing  the  results  and  steps  of  the  construction  using  3D  graphics.  Similar  to  the  mentioned  equivalent  section  of
Chapter  1  of  the  Programming  volume  [488˜]  of  the  GuideBooks,  we  will  make  some  use  of  Mathematica’s  typesetting
capabilities.  All  cells  will  be  InputForm  cells,  but  some  special  characters  for  Part,  Rule,  …  will  be  used.  Because
efficiency is an important  issue  in the following section,  often we will use constructions  of the form input // Timing  to
better see the actual time needed for various operations.

Readers who are physicists,  chemists, materials science majors and so on, will probably remembers the nice-looking pictures
of polyhedra called Brillouin zones from the time the reader went to college/university.  (In case the reader does not have one
of these  professions  and/or  have  never  heard  the  phrase  Brillouin  zone,  this  does  not  matter;  just  go on  reading.  I  hope the
reader will enjoy the pictures in the following anyway.) But the reader might have wondered why they never showed pictures
of the, say, 11th Brillouin zone (which we would expect to look pretty funky taking into account how the first and second one
look)—at least, the author always wondered about it. To cure this curiosity of the reader, in the following, we will explicitly
calculate  and  visualize  higher  Brillouin  zones  for  simple  cubic,  face-centered  cubic  and  body-centered  cubic  lattices.  (To
refresh  the  memory  about  Brillouin  zones,  see  [49˜],  [26˜],  [60˜],  [258˜],  [276˜],  [262˜],  [97˜],  [539˜],  [301˜],  [495˜],
[338˜], and [457˜]; for an elementary geometrical introduction, see [196˜].)

Now, let us become more technical. What is a Brillouin zone? Let us give a recursive definition.

The first Brillouin zone of a lattice L with lattice points g”÷ i  is the closure of the set of all points x”÷  such that °x”÷ - 0”÷ • §†x”÷ - g”÷ i § for
all  g”÷ i≠0”÷ .  (In other  words,  the  first  Brillouin  zone is  the Voronoi  cell  of the  lattice around  the origin.)  The second  Brillouin
zone  is formed  by  all  points  x”÷  such  that  °x”÷ - 0”÷ • §†x”÷ - g”÷ i §  for  all  g”÷ i  not  already  used  in the  inequalities  of  the first  Brillouin
zone. The third Brillouin zone is formed by all points x”÷  such that °x”÷ - 0”÷ • §†x”÷ - g”÷ i § for all g”÷ i  not already used in the inequalities
of the first and second Brillouin zone, the fourth is and so on. In other words, the Hn + 1Lth Brillouin zones is the set of points
that a line to them crosses exactly n bisector planes. (In computational geometry, a nth-order Brillouin zones would be called
an nth-degree Voronoi region [132˜], [31˜] or the nth nearest point Voronoi diagram [364˜].)

This definition immediately suggests the following constructive algorithm for building Brillouin zones.

Fix  one  lattice  point,  and  call  it  the  origin.  Construct  line  segments  joining  the  origin  with  all  lattice  points.  (When  really
doing the construction,  we will, of course, only use a finite set of lattice points around the origin.) Erect perpendicular bisec-
tors (in a 2D lattice, these are lines; in a 3D lattice, these are planes). These bisectors intersect each other typically quite often.
We  split  the  bisectors  into  pieces  formed  by  intersections  with  the  other  bisectors.  Now,  take  out  all  (finite)  parts  of  the
bisectors that bound the region that encloses the origin—this is the (boundary of the) first Brillouin zone. Now, again take out
all parts  of the bisectors  that bound the region that encloses the origin —this is the (boundary of the) second Brillouin zone
(the  inner boundary  of  the second  Brillouin  zone is the  boundary  of the  first  Brillouin  zone).  Now, again take  out all  parts,
and so on.

This section implements the construction of 3D Brillouin zones of cubic lattices. We will construct the first 20 Brillouin zones
and will visualize them. The construction is fairly general, and by taking into account more lattice points, it is straightforward
to construct the first 50 Brillouin zones (which of course needs more memory and more time). 
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In[1]:= (* to save memory *) $HistoryLength = 0;

We will split the construction of the individual regions into the following steps:

1. Construction and tessellation of the bisector  planes: We will start with the lattice points near the origin inside a sphere of
given diameter.  Then,  we will  construct  planes  perpendicular  to  the lines  from the  origin to the lattice  point at  half  the dis-
tance origin-lattice  point. For each of these planes, we will calculate the intersection lines with all  other planes.  We will use
the symmetry of the underlying lattice to calculate only “different” plane arrangements—for a cubic lattice, this reduces most
of the time-consuming calculations by a factor of 48. Then, we will calculate the convex polygons inside each of the planes
formed by the other planes. 

2. Construction of the polygons in the symmetry unit: We will calculate all polygons from all bisector planes that fall into the
symmetry unit.

3. Build the Brillouin zones from the polygons: Recursively, we will form the polytopes around the origin whose faces are the
polygons from step 2 and are nearest to the origin.

4.  Visualize  the  Brillouin  zones:  We  will  generate  the  polygons  in  the  other  47  units  and  remove  artificial  polygon  edges
induced by the bounding planes of the symmetry unit.

5. Construction of Brillouin zones of a body-centered lattice.

6. Construction of Brillouin zones of a face-centered lattice.

In all of the implementation, we must care about efficiency, or we will not be able to generate the higher order zones. We will
carry  out  all  arithmetic  using  rational  numbers,  which  avoids  any  rounding  problems  and  identification  problems  of  points
with high degeneracies  (typically,  it  is advantageous  to use floating point  numbers  in graphics-related  applications;  here we
have a counter example to this general rule). Other lattices types,  hexagonal,  for instance, are treatable in a similar  way, but
because  the  coordinates  of  the  intersections  of planes  will  contain radicals,  RootReduce  (see  Chapter  1  of the  Symbolics
volume [490˜]  of the GuideBooks) is needed  for  canonicalization.  This would make things more time-consuming.  (Another
possibility would be to use high-precision arithmetic. This would require certain changes in the following code.)

In parts  1  to 4 of the construction,  we will implement,  test and  explain all  functions  needed  such that parts  5 and 6 become
short, simple calls to the already-implemented functions.
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possibility would be to use high-precision arithmetic. This would require certain changes in the following code.)

In parts  1  to 4 of the construction,  we will implement,  test and  explain all  functions  needed  such that parts  5 and 6 become
short, simple calls to the already-implemented functions.

1. Construction and Tessellation of the Bisector Planes

The  function  latticePointListSC  generates  all  lattice  points  that  we  want  to  take  into  account.  It  returns  all  lattice
points  inside  a  sphere  of  radius  d  around  the  origin.  We  start  with  a  simple  cubic  lattice.  (At  the  end,  we  will  treat  a
body-centered and a face-centered lattice too.)

In[2]:= latticePointListSC[d_] := 
  With[{n = Ceiling[d]}, 
    Select[DeleteCases[
      Flatten[Table[{i, j, k}, {i, -n, n}, {j, -n, n}, {k, -n, n}], 2], 
       (* without origin *){0, 0, 0}], #. # <= d^2&]]

Taking into account all lattice points yields 256 lattice points inside a sphere of radius 4.

In[3]:= maxDist = 4;
Length[latticePoints = latticePointListSC[maxDist]]

Out[4]= 256

Here are these lattice points.

In[5]:= Show[Graphics3D[Cuboid[# + 0.1 {1, 1, 1},
                       # - 0.1 {1, 1, 1}]& /@ latticePoints],
     Axes Ø True];
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In the following calculations, we often have to normalize vectors to unit length. The pure function  will do this.

In[6]:= (* a function for normalizing vectors *)
 = #/Sqrt[#.#]&; 

Next,  we  construct  the  perpendicular  planes  in  the  middle  of  the  lines  origin–latticePoint.  We  denote  a  plane  in  the  form
Plane[onePointOfThePlane,listOfTwoOrthogonalDirections]. The function toPlane generates a plane (head Plane) of
the bisector plane formed by the point latticePoint.
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In[8]:= toPlane[p:latticePoint_] :=
Plane[latticePoint/2,

Which[(* lattice point is on a coordinate axis *) 
          pP1T == 0 && pP2T == 0, {{1, 0, 0}, {0, 1, 0}},

  pP1T == 0 && pP3T == 0, {{1, 0, 0}, {0, 0, 1}},
  pP2T == 0 && pP3T == 0, {{0, 1, 0}, {0, 0, 1}},

          (* lattice point is on a coordinate plane *)
          pP1T != 0 && pP2T != 0, {#, Cross[#, p]}&[{pP2T, -pP1T, 0}],

  pP1T != 0 && pP3T != 0, {#, Cross[#, p]}&[{pP3T, 0, -pP1T}],
  pP2T != 0 && pP3T != 0, {#, Cross[#, p]}&[{0, pP3T, -pP2T}],
  (* lattice point is in generic position *)
  True, {#, Cross[#, p]}&[{pP2T, -pP1T, 0}]]]

We are now adding some planes that guarantee that polygons are divided along the symmetry planes. A “symmetry unit” (for
brevity, just called unit in the following) is given by the following domain x ¥ 0, y ¥ 0, z ¥ 0, z ¥ x, x ¥ y. This is 1/48 of the
whole space. The list symmetrySlicingPlanes contains the planes that bound the unit.

In[9]:= symmetrySlicingPlanes = 
 Plane[{0, 0, 0}, #]& /@ 
     {{{1, 0, 0}, {0, 1, 0}}, {{1, 0, 0}, {0, 0, 1}},
      {{0, 1, 0}, {0, 0, 1}}, {{0, 0, 1}, {-1, 1, 0}},
      {{0, 0, 1}, {1, 1, 0}}, {{1, 0, 0}, {0, -1, 1}},
      {{1, 0, 0}, {0, 1, 1}}, {{0, 1, 0}, {-1, 0, 1}},
      {{0, 1, 0}, {1, 0, 1}}};

Here are the symmetrySlicingPlanes. The red, slightly sticking out polygons mark one symmetry unit. We will in the
following concentrate on this unit and only later in the visualization part generate all other 47 units by reflection and rotation.

In[10]:= With[{ε = 0.05},
 Show[Graphics3D[{(* make polygons *)

 Polygon[{#P1T - #P2, 1T - #P2, 2T, #P1T + #P2, 1T - #P2, 2T,
          #P1T + #P2, 1T + #P2, 2T, #P1T - #P2, 1T + #P2, 2T}]& /@ 

                                      symmetrySlicingPlanes,
{SurfaceColor[Hue[0]],(* lift a bit up *) 
Map[# + {ε, ε, 2ε}&, (* boundary of the unit cone *)

        {Polygon[{{0, 0, 0}, {0, 0, 1}, {1, 0, 1}}],
      Polygon[{{0, 0, 0}, {0, 0, 1}, {1, 1, 1}}],

     Polygon[{{0, 0, 0}, {1, 0, 1}, {1, 1, 1}}]},
    {-2}]}}], Boxed Ø False]];

planes is a list of all planes that contains the planes to the lattice points as well as the planes that bound the unit.
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In[11]:= planes = Join[toPlane /@ latticePoints, symmetrySlicingPlanes];

In[12]:= Take[planes, 4]

Out[12]= 9Plane@8-2, 0, 0<, 880, 1, 0<, 80, 0, 1<<D,
PlaneA9- 3

ÅÅÅÅ2 , -1, -
1
ÅÅÅÅ2 =, 88-2, 3, 0<, 8-3, -2, 13<<E,

PlaneA9- 3
ÅÅÅÅ2 , -1, 0=, 88-2, 3, 0<, 80, 0, 13<<E,

PlaneA9- 3
ÅÅÅÅ2 , -1, 1

ÅÅÅÅ2 =, 88-2, 3, 0<, 83, 2, 13<<E=
Next, we construct representations of the lines that are formed by the intersection of two planes. The presentation of the lines
will be in the form Line[onePointOfTheLine, lineDirection]. We use here a two-argument version of Line, in distinction
to the built-in Line, which takes one argument. The function lineOnPlane[plane1, plane2] calculates the intersection
line which is located on plane1 , induced by its intersection with the plane plane2 .

In[13]:= (* three equations cannot be solved for four variables *)
Off[Solve::"svars"];

lineOnPlane[Plane[p_, {dir1_, dir2_}], Plane[q_, {d1_, d2_}]] :=
Module[{eqs, sol, line, var, aux, P1, P2},

   If[(* are the planes parallel? *)
  Length[DeleteCases[
    RowReduce[{dir1, dir2, d1, d2}], {0, 0, 0}, {1}]] == 2, {},
(* calculate direction of the intersecting line *)

      eqs = Thread[p + s dir1 + t dir2 == q + u d1 + v d2] ;
          sol = Solve[eqs, {s, t, u, v}];
          aux = p + s dir1 + t dir2 /. sol[[1]];
          (* two points on the line *)
          {P1, P2} = {aux /. {u -> 0, v -> 0}, aux /. {u -> 1, v -> 1}};

    Line[P1, P2 - P1]]]

Here are two examples of the lines induced on the first plane.

In[16]:= lineOnPlane[planes[[1]], planes[[5]]]

Out[16]= Line@8-2, 1, -1<, 80, -20, 10<D
In[17]:= lineOnPlane[planes[[1]], planes[[11]]]

Out[17]= Line@8-2, 0, 1<, 80, -10, 0<D
linesOnPlane1  is a list of all lines on the first plane that are induced by the other planes. We will take the first plane for
exemplifying the further calculation steps. 

In[18]:= (linesOnPlane1 = DeleteCases[
      Table[lineOnPlane[planes[[1]], planes[[i]]],   

{i, 2, Length[planes]}], {}, {1}];) // Timing
Out[18]= 80.11 Second, Null<

We calculated 256 lines on the first plane.

In[19]:= Length[linesOnPlane1]

Out[19]= 256
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In[20]:= Take[linesOnPlane1, 3]

Out[20]= 9LineA9-2, -
1
ÅÅÅÅ4 , -

1
ÅÅÅÅ2 =, 90, -

13
ÅÅÅÅÅÅÅ2 , 13=E,

LineA9-2, -
1
ÅÅÅÅ4 , 0=, 80, 0, 13<E, LineA9-2, -

1
ÅÅÅÅ4 , 1

ÅÅÅÅ2 =, 90, 13
ÅÅÅÅÅÅÅ2 , 13=E=

To avoid superfluous computations,  we will only keep the lines that are near the origin (some of the lines will have a mini-
mum distance  larger  than maxDist).  The function lineDistanceSquare  calculates  the minimum distance  of a  line to
the origin.

In[21]:= lineDistanceSquare[Line[p_, dir_]] := #.#&[p - dir.p/dir.dir dir]

Here is the distribution of distances for all line segments from the first plane.

In[22]:= ListPlot[Sqrt[Sort[N[lineDistanceSquare /@ linesOnPlane1]]],  
         PlotRange Ø All, AxesOrigin Ø {0, 0}];
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In[23]:= linesOnPlane1 = Select[linesOnPlane1, (* delete to far away lines *)
                       lineDistanceSquare[#] < maxDist^2&];

This process reduced the number of lines by about 20%.

In[24]:= Length[linesOnPlane1]

Out[24]= 200

The next  step  is  the  calculation  of  the  intersection  of  two lines.  After  checking  if  two  lines  intersect  at  all  (by  again using
RowReduce), we will use LinearSolve  to calculate the actual intersection point. Because LinearSolve does not have
to deal with variables, it is slightly faster than Solve. 
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In[25]:= Off[LinearSolve::nosol];
lineIntersection[Line[p1_, dir1_], Line[p2_, dir2_], d_] :=
Module[{ls},

(* are the two lines the same? *)
If[(Length[DeleteCases[RowReduce[{dir1, dir2}],

           {0, 0, 0}, {1}]] === 1) && 
        (* check head *)
        Head[LinearSolve[Transpose[{dir1}], 
                  p2 - p1]] =!= LinearSolve,
            Sequence @@ {},

 (* the actual intersection (if any) *)
ls = LinearSolve[Transpose[{dir1, dir2}], p2 - p1];
If[Head[ls] === LinearSolve, Sequence @@ {},
   (* inside the sphere of interest? *)
   If[#.# < d^2, Point @ #, Sequence @@ {}]&[
              p1 + lsP1T dir1]]]]

We collect all of the intersection  points of all lines from the first plan in the list intersectionsPlane1. For efficiency,
we again take into account only nearby points in maximum distance 2 ê4 maxDist. 

In[27]:= intersectionsPlane1 = DeleteCases[Table[If[i == j, Sequence @@ {},
    lineIntersection[linesOnPlane1PjT, linesOnPlane1PiT, 3/4 maxDist]],

        {j, Length[linesOnPlane1]}, {i, Length[linesOnPlane1]}], 
                              {}, {1}]; // Timing

Out[27]= 88.28 Second, Null<
We found 14196 intersection points on the current plane.

In[28]:= Length[Flatten[intersectionsPlane1]]

Out[28]= 14196

Here is a distribution of the distance of the intersection points from the origin.

In[29]:= ListPlot[Sort[Sqrt[#P1T.#P1T]& /@ N[Flatten[intersectionsPlane1]]],
         PlotRange Ø All];
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Given the points from a line, we form the line segments between the points. To do this, we fix one point and order the remain-
ing points with respect to the distance from the chosen point.
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In[30]:= lineSegments[points_] :=
Module[{points1 = Union[First /@ points],
        distancesFromOrigin, startPoint},
        (* distances from chosen point *)

distancesFromOrigin = #.#& /@ points1;
(* furthest point *)
startPoint = points1PPosition[distancesFromOrigin,
                      Max[distancesFromOrigin]]P1, 1TT;
(* sort points according to distance and form pairs *)                      

     Line /@ Partition[Sort[points1, 
                      (#.#&[#1 - startPoint] < 
                       #.#&[#2 - startPoint])&], 2, 1]]

Here are all of the line segments of the first plane.

In[31]:= lineSegmentsPlane1 = lineSegments /@ intersectionsPlane1;

In[32]:= Length[Flatten[lineSegmentsPlane1]]

Out[32]= 4744

To show them, we contract them slightly.

In[33]:= contract[Line[{p1_, p2_}], f_] := 
Module[{mp = (p1 + p2)}, Line[{mp + f(p1 - mp), mp + f(p2 - mp)}]]

In[34]:= Show[Graphics3D[{Hue[Random[]],
     contract[#, 0.8]& /@ #}& /@ lineSegmentsPlane1],

     BoxRatios Ø {1, 1, 1}, Axes Ø True,
     (* view perpendicular *) ViewPoint Ø 4 latticePointsP1T];
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We see the location of the line segments in 3D better when we use thin spindles instead of Line primitives.
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In[35]:= makeSpindle[Line[{p1_, p2_}]] :=
Module[{dir1, dir2, dir3, aux, mp = (p1 + p2)/2,
        l = Sqrt[(p2 - p1). (p2 - p1)], n = 6},
       (* three orthogonal directions *)
       dir1 = [p2 - p1];
       dir2 = [Table[Random[], {3}]];
       dir2 = [dir2 - dir1.dir2 dir1];
       dir3 = Cross[dir1, dir2];
       (* the spindle *)
       aux = Table[mp + l/12 (Cos[j] dir2 + Sin[j] dir3),
                   {j, 0, 2. Pi, 2.Pi/n}];
       {Polygon[Append[#, p1]], Polygon[Append[#, p2]]}& /@
                    Partition[aux, 2, 1]]          

In[36]:= Show[Graphics3D[{EdgeForm[], {SurfaceColor[Hue[Random[]]],
     makeSpindle[#]}& /@ Flatten[lineSegmentsPlane1]}],

     BoxRatios Ø {1, 1, 1}, ViewPoint -> {3, 0, 1},
     PlotRange Ø 2.1{{-1, 1}, {-1, 1}, {-1, 1}}];

We see  a  high  degeneracy  in  the  sense  that  often  more  than  two lines  intersect  at  a  given  point.  Here,  it  is  calculated  how
often how many line segments meet at one point. (An odd number of lines meeting at a point is caused by points lying on the
boundary.)

In[37]:= {#[[1]], Length[#]}& /@ Split[Sort[Length /@ Split[Sort[
   Join[#, Reverse /@ #]&[First /@ Flatten[lineSegmentsPlane1]]],
                              #1P1T === #2P1T&]]]

Out[37]= 882, 24<, 83, 40<, 84, 636<, 85, 20<, 86, 364<,87, 12<, 88, 188<, 89, 8<, 810, 72<, 812, 40<, 814, 28<,816, 21<, 818, 8<, 822, 8<, 824, 8<, 828, 4<, 832, 4<, 838, 4<<
We keep exactly one (directed) copy of each line segment to form polygons from the line segments.

In[38]:= allLineSegmentsPlane1 = 
 Join[#, Map[Reverse, #, {2}]]&[
 Flatten[(* give name *) directedLineSegmentsPlane1 =
   Union[Map[Sort, Flatten[lineSegmentsPlane1], {2}]]]];

A fast method for the determination of point-line connection is implemented in the following input. It uses hashing techniques
of the built-in  function Set,  instead  of  repeated calls  to Select  for  every  point and  line  segment.  Here,  we introduce  the
globally visible variable linesFromPoint.
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In[39]:= makePointsFromLines[lineSegments_] :=
Module[{allLineSegments, allCrossingPoints},

   (* each line segment in each direction must appear once *)
    allLineSegments = Join[#, 
         Map[Reverse, #, {2}]]&[Flatten[lineSegments]];

(* all crossing points *)
allCrossingPoints = Point /@ Union[
          Flatten[First /@ allLineSegments, 1]];

       (* which line segments start from which point *)
  Clear[linesFromPoint];
  (* create definitions for linesFromPoint *)

      (linesFromPoint[#] = {})& /@ allCrossingPoints;
      (linesFromPoint[Point[#P1, 1T]] =

{linesFromPoint[Point[#P1, 1T]], #})& /@ 
                            allLineSegments;

      (linesFromPoint[#] = Flatten[linesFromPoint[#]])& /@
                                    allCrossingPoints;]

In[40]:= makePointsFromLines[directedLineSegmentsPlane1] // Timing

Out[40]= 80.38 Second, Null<
Here are the current definitions for the global variable linesFromPoint.

In[41]:= Take[DownValues[linesFromPoint], 2]

Out[41]= 9HoldPatternAlinesFromPointAPointA9-2, -
11
ÅÅÅÅÅÅÅ5 , -

1
ÅÅÅÅ5 =EEE ß9LineA99-2, -

11
ÅÅÅÅÅÅÅ5 , -

1
ÅÅÅÅ5 =, 9-2, -

13
ÅÅÅÅÅÅÅ6 , -

1
ÅÅÅÅ6 ==E,

LineA99-2, -
11
ÅÅÅÅÅÅÅ5 , -

1
ÅÅÅÅ5 =, 9-2, -

17
ÅÅÅÅÅÅÅ8 , -

1
ÅÅÅÅ4 ==E=,

HoldPatternAlinesFromPointAPointA9-2, -
11
ÅÅÅÅÅÅÅ5 , 1

ÅÅÅÅ5 =EEE ß9LineA99-2, -
11
ÅÅÅÅÅÅÅ5 , 1

ÅÅÅÅ5 =, 9-2, -
13
ÅÅÅÅÅÅÅ6 , 1

ÅÅÅÅ6 ==E,
LineA99-2, -

11
ÅÅÅÅÅÅÅ5 , 1

ÅÅÅÅ5 =, 9-2, -
17
ÅÅÅÅÅÅÅ8 , 1

ÅÅÅÅ4 ==E==
The  function  clockwiseSort  now  sorts  all  line  segments  originating  from  a  given  point  in  clockwise  order.  To  avoid
recalculations  we  dynamically  create  definitions  with  mostLeftSegment.  mostLeftSegment[Line[point1 ,
intersectionPoint],  Line[intersectionPoint,  point2]]  gives  the  left-most  line  segments  with  respect  to  the  line
Line[point1, intersectionPoint] at the point intersectionPoint.

In[42]:= clockwiseSort[Point[p_], lines_, plane_] :=
Module[{lines1, sorted},

   (* two orthogonal directions *)
   {dir1, dir2} = N[#/Sqrt[#.#]& /@ planeP2T];

      (* angles of all line segments *)
   lines1 = {#, ArcTan[(#P1, 2T - #P1, 1T).dir1,

           (#P1, 2T - #P1, 1T).dir2]}& /@ lines;
      (* sort angle list *)

   sorted = First /@ Sort[lines1, #1P2T < #2P2T&];
      (* create definitions for mostLeftSegment *)
Apply[(mostLeftSegment[Map[Reverse, #1, {1}]] = #2)&,
               Partition[Append[sorted, First[sorted]], 2, 1], {1}]]
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In[43]:= Timing[clockwiseSort[#P1, 1, 1T, #P2T, planesP1T]& /@
                              DownValues[linesFromPoint];]

Out[43]= 81.17 Second, Null<
Here are the current definitions for the global variable mostLeftSegment.

In[44]:= Take[DownValues[mostLeftSegment], 2]

Out[44]= 9HoldPatternAmostLeftSegmentALineA99-2, -
11
ÅÅÅÅÅÅÅ5 , -

1
ÅÅÅÅ5 =, 9-2, -

13
ÅÅÅÅÅÅÅ6 , -

1
ÅÅÅÅ6 ==EEE ß

LineA99-2, -
13
ÅÅÅÅÅÅÅ6 , -

1
ÅÅÅÅ6 =, 9-2, -2, -

1
ÅÅÅÅ4 ==E,

HoldPatternAmostLeftSegmentALineA99-2, -
11
ÅÅÅÅÅÅÅ5 , -

1
ÅÅÅÅ5 =, 9-2, -

17
ÅÅÅÅÅÅÅ8 , -

1
ÅÅÅÅ4 ==EEE ß

LineA99-2, -
17
ÅÅÅÅÅÅÅ8 , -

1
ÅÅÅÅ4 =, 9-2, -2, -

1
ÅÅÅÅ3 ==E=

Now, we can implement a function makePolygon that forms recursively polygons from the line segments in a plane. To do
this,  we start  at an intersection  of two lines,  move along  the line until  the next  intersection,  there  we turn  into the left-most
next line until the next intersection comes, there we turn into the left-most, and so on until we again arrive at the starting point.

In[45]:= (* add the next left-most segments *)
makePolygon[Polygon[s___, lastSegment_]] :=

makePolygon[Polygon[s, lastSegment, mostLeftSegment[lastSegment]]]

(* in case the last point is equal to the first one -- we are done *)
makePolygon[Polygon[firstSegment_, s___, firstSegment_]] := 
 ((lineSegmentAlreadyUsedQ[#] = True)& /@ {firstSegment, s};
                       Polygon[#[[1, 1]]& /@ {firstSegment, s}])

The calculation of the polygons can now be done quickly.

In[50]:= (allPolysPlane1 = Flatten[
If[TrueQ[lineSegmentAlreadyUsedQ[#]], {}, 
    makePolygon[Polygon[#]]]& /@ allLineSegmentsPlane1];) // Timing

Out[50]= 80.52 Second, Null<
The first plane contains 2033 polygons at this point.

In[51]:= allPolysPlane1 // Length

Out[51]= 2033

We also have the outer polygon in our current list. It can be easily found because it has the most vertices.

In[52]:= deleteOuterPolygon[polys_] :=
 Delete[polys, Position[#, Max[#]]P1, 1T]&[Length[#P1T]& /@ polys]
                               
deleteOuterPolygon[{}] := {}

In[55]:= allPolysPlane1 = deleteOuterPolygon[allPolysPlane1];

Here are the polygons from our working plane.

In[56]:= contract[Polygon[l_], f_] :=
 With[{mp = Plus @@ l/Length[l]}, Polygon[mp + f(# - mp)& /@ l]]
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In[57]:= Show[Graphics3D[{SurfaceColor[Hue[Random[]]],
                 contract[#, 0.7]}& /@ allPolysPlane1],
     BoxRatios Ø {1, 1, 1}, Axes Ø True, 
      ViewPoint Ø 4 latticePointsP1T];
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We  now  put  all  of  the  functions  above  together  into  a  function  tessellatePlane.  tessellatePlane[plane,
planes, d]  will  give a  list  of  all  of the polygons  in plane plane  which  are induced  by intersections  with  the planes planes
within a maximal distance d.
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In[58]:= tessellatePlane[plane_, planes_, d_] := 
          tessellatePlane[plane, planes, d] =
Module[{linesOnThePlane, planeIntersections,
directedPlaneLineSegments, allPlaneLineSegments},
(* the lines formed by the intersection with the other planes *)
linesOnThePlane = Select[DeleteCases[

     Table[lineOnPlane[plane, planesPiT],
  {i, Length[planes]}], {}, {1}],

     lineDistanceSquare[#] <= d^2&];
(* the intersection points inside the planes *)
 planeIntersections = 
  DeleteCases[Table[If[i === j, Sequence @@ {},

lineIntersection[linesOnThePlanePjT, linesOnThePlanePiT, d]],
              {j, Length[linesOnThePlane]},
              {i, Length[linesOnThePlane]}], {}, {1}];

(* the line segments inside the planes *)
directedPlaneLineSegments = Union[Map[Sort,

Flatten[lineSegments /@ planeIntersections], {2}]];
(* line segments in both directions *)
allPlaneLineSegments = Join[#, Map[Reverse, #, {2}]]&[

   Flatten[directedPlaneLineSegments]];
(* the polygons inside the planes *)
Clear[mostLeftSegment, lineSegmentAlreadyUsedQ];
makePointsFromLines[directedPlaneLineSegments];
clockwiseSort[#P1, 1, 1T, #P2T, plane]& /@ 
                        DownValues[linesFromPoint];
allPolys = Flatten[If[TrueQ[lineSegmentAlreadyUsedQ[#]], {}, 

              makePolygon[Polygon[#]]]& /@ 
                              allPlaneLineSegments];

(* delete the outermost polygon *)
deleteOuterPolygon[allPolys]]

Here are four more examples of tessellated planes. Depending on the direction of the lattice point, the resulting tessellation of
the plane has different symmetries. We also count the number of polygons inside one plane to get an idea of the total number
of polygons to deal with in the next step.

In[59]:= (* auxiliary function for generating a picture *)
tessellatedPlanePicture[latticePoint_, d_, opts___] := 
Module[{plane = toPlane[latticePoint], polys},
       (* the polygons to display *)
       polys = tessellatePlane[plane, DeleteCases[planes, plane], d];
        (* the picture *)                

Show[Graphics3D[{SurfaceColor[Hue[Random[]]],
                 EdgeForm[Thickness[0.0001]], 
                 contract[#, 0.7]}& /@ polys],
     opts, BoxRatios Ø {1, 1, 1}, Axes Ø True,
     (* view from perpendicular direction *)
     ViewPoint Ø 3 latticePoint]]

In[61]:= Function[points, Show[GraphicsArray[
Block[{$DisplayFunction = Identity}, 
      tessellatedPlanePicture[#, 3]& /@ points]]]] /@ 
      {{{2, 2, 2}, {3, 3, 0}}, {{2, 0, 0}, {1, 2, 3}}};
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Here are the number of polygons that appear in the last graphics.

In[62]:= % /. {gr3d_Graphics3D :> Count[gr3d, _Polygon, Infinity],
      GraphicsArray -> List}

Out[62]= %61
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2. Construction of the Polygons in the Symmetry Unit

We saw that we get a couple of thousand  polygons per  plane.  Taking into account  that we have to deal with a few hundred
planes, this would give a very large number of polygons. It is now time to take the symmetry of the lattice into account. We
only  calculate  all  polygons  inside  the  unit  described  above  (and  later  on,  we  rotate  and  mirror  the  polygons  that  form  the
Brillouin zones into the other 47 units). Inside the symmetry unit, we have just 15 different points to consider. 

In[63]:= selectedLatticePoints = 
Select[latticePoints, (#P1T >= 0 && #P2T >= 0 && 

                #P3T >= 0 && #P1T >= #P2T &&
               #P3T >= #P1T)&]

Out[63]= 880, 0, 1<, 80, 0, 2<, 80, 0, 3<, 80, 0, 4<, 81, 0, 1<,81, 0, 2<, 81, 0, 3<, 81, 1, 1<, 81, 1, 2<, 81, 1, 3<,82, 0, 2<, 82, 0, 3<, 82, 1, 2<, 82, 1, 3<, 82, 2, 2<<
In[64]:= Length[selectedLatticePoints]

Out[64]= 15

This  does, of  course, not  mean that we only have to calculate  the polygons  in the planes formed by lattice points  inside the
unit. Other planes might also contribute polygons into the unit (they intersect with the planes associated with the points from
the unit). But the plane tessellations of lattice points outside  the unit are the same as for the equivalent  point inside the unit.
The function transformIntoUnit  gives the equivalent  point in the unit as well as the matrix, which rotates the point to
the equivalent point. Later, we will use the inverse of this matrix to rotate the polygons back into the other units. transformÖ
IntoUnit works recursively until the point is within the first unit.

In[65]:= transformIntoUnit[{x_, y_, z_}, mat_] :=
transformIntoUnit[{-x, y, z}, 
             {{-1, 0, 0}, {0, 1, 0}, {0, 0, 1}}.mat] /; x < 0

transformIntoUnit[{x_, y_, z_}, mat_] :=
transformIntoUnit[{x, -y, z},
             {{1, 0, 0}, {0, -1, 0}, {0, 0, 1}}.mat] /; y < 0

transformIntoUnit[{x_, y_, z_}, mat_] :=
transformIntoUnit[{x, y, -z},
             {{1, 0, 0}, {0, 1, 0}, {0, 0, -1}}.mat] /; z < 0

transformIntoUnit[{x_, y_, z_}, mat_] :=
transformIntoUnit[{y, x, z},
             {{0, 1, 0}, {1, 0, 0}, {0, 0, 1}}.mat ] /; y > x

transformIntoUnit[{x_, y_, z_}, mat_] :=
transformIntoUnit[{z, y, x},
             {{0, 0, 1}, {0, 1, 0}, {1, 0, 0}}.mat ] /; x > z

The function tessellatePlane1  is built  on top of the function tessellatePlane  and uses the memorized tessella-
tions  of  tessellatePlane.  It  takes  a  tessellated  plane  from inside  the  unit  and  rotates  it  into the  position  of  the  lattice
point under consideration.
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In[70]:= tessellatePlane1[latticePoint_, d_] :=
Module[{latticePointInsideUnit, mat, rotationMatrix,

currentPlane, polys},
    (* the equivalent point inside the unit and 
       the corresponding rotation matrix *)
   {latticePointInsideUnit, mat} = 
    List @@ transformIntoUnit[latticePoint, IdentityMatrix[3]];

       (* the rotation matrix from the point inside the 
  unit to the original point *)

  rotationMatrix = Inverse[mat];
   (* the tessellation of the point inside the unit *)
  currentPlane = toPlane[latticePointInsideUnit];
  polys = tessellatePlane[toPlane[latticePointInsideUnit], 
         DeleteCases[planes, currentPlane], d];
   (* rotate all polygons inside the original position *)

If[polys =!= {}, Map[rotationMatrix.#&, polys, {-2}], {}]]

The function inUnitQ determines if a given polygon is inside the first symmetry unit.

In[71]:= (* for a single point *)
inUnitQ[{x_, y_, z_}] := x >= 0 && y >= 0 && z >= 0 && 
                         x >= y && z >= x
(* for a whole polygon *)                         
inUnitQ[Polygon[l_]] := And @@ (inUnitQ /@ l)

We now carry out the tessellation of all planes and keep only the polygons inside the unit and inside a distance maxDist/2.
This is the most  time-consuming operation of the whole construction.  With the currently used parameters,  this will  take less
than 2 1ÅÅÅÅ2  minutes on a 2 GHz computer.

In[75]:= (polygonsInUnit = Select[tessellatePlane1[#, maxDist/2],
                         inUnitQ]& /@ latticePoints); // Timing

Out[75]= 867.55 Second, Null<
After dealing with all 256 lattice points, we had to do the hard work—the tessellation of a plane—only for a small fraction of
them.

In[76]:= Length[DownValues[tessellatePlane]]

Out[76]= 20

About 20000 polygons were calculated.

In[77]:= Count[DownValues[tessellatePlane], _Polygon, Infinity]

Out[77]= 19540

Here  a picture  of the shrunken polygons  inside the  unit  is shown;  all  polygons  originating  from one plane are  shown in the
same color.
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In[78]:= Show[Graphics3D[{EdgeForm[], SurfaceColor[Hue[Random[]]],
                 (contract[#, 0.66]&) /@ #}& /@ polygonsInUnit],
     BoxRatios -> {1, 1, 1}, Axes -> True, PlotRange -> All];

0

0.5

1

0

0.25

0.5
0.75

1

0.5

1

1.5

2

0

0.5

1

0

0.25

0.5
0.75

1

Inside the unit,  we now have 2650 polygons.  If we did not  take symmetry  into account,  we would have  to deal with nearly
130000 polygons!

In[79]:= Length[polygonsInUnit = Flatten[polygonsInUnit]]

Out[79]= 2650

3. Build the Brillouin Zones from the Polygons

To build the Brillouin zones,  we need a polygon to start with.  We start  with one that touches the z-axis and is currently  the
“innermost” one. The function selectPolygonsOnZAxis selects all polygons that have a point at the z-axis.

In[80]:= selectPolygonsOnZAxis[polygonsInUnit_] := 
Select[Select[polygonsInUnit, MemberQ[#P1T,  {0, 0, _}]&],    
       MemberQ[DeleteCases[#P1T, {0, 0, _}], {_, 0, _}]&];

We now have 27 such polygons.

In[81]:= (polygonsOnZAxis = 
      selectPolygonsOnZAxis[polygonsInUnit]) // Length

Out[81]= 27
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It  can happen that some polygons  share  a point  at the z-axis.  In this case,  the  currently “innermost”  polygon is the one  that
points the most  downward in the x,z-plane  or, if  some polygons  point in the same direction,  the direction in the y-direction.
The function zValueAndAngle determines the point at the z-axis and the two mentioned angles.

In[82]:= zValueAndAngle[Polygon[l_]] :=
Module[{zAxisPoint, zValue, xzPlanePoint, 
        a, mp, dir1, dir2, dir3, b},

   (* first look at the z value of the point on the z-axis *)
   zAxisPoint = Cases[l, {0, 0, _}]P1T;
   zValue = zAxisPointP3T;
   (* second look at the height of the 
      point on the x-z plane *)
   xzPlanePoint = Cases[l, {_?(# =!= 0&), 0, _}]P1T;
   a = ArcTan[xzPlanePointP1T, xzPlanePointP3T - zValue];
   (* in case polygons have the same edge in the x,z-plane, 
      compare the angle of the midpoint with respect to the edge *)

       mp = Plus @@ l/Length[l];
   dir1 = [zAxisPoint - xzPlanePoint];
   dir2 = {0, 1, 0};
   dir3 = Cross[dir2, dir1];
   b = ArcTan[Expand[(mp - xzPlanePoint).dir2],
              Expand[(mp - xzPlanePoint).dir3]];
   (* return data *)           
   {zValue, a, b}]

Now, we sort the polygons polygonsOnZAxis with respect to the sorting function polygonsOnZAxisSortedQ.

In[83]:= polygonsOnZAxisSortedQ[{_Polygon, {z1_, a1_, b1_}},
                   {_Polygon, {z2_, a2_, b2_}}] :=
Which[(* compare z values *) z1 < z2, True, z1 > z2, False,
      (* compare a angles *) a1 < a2, True, a1 > a2, False,
      (* compare b angles *) b1 < b2, True, b1 > b2, False]

In[84]:= sortPolygonsOnZAxis[polygonsOnZAxis_] :=
First /@ Sort[{#, zValueAndAngle[#]}& /@ polygonsOnZAxis,

                            polygonsOnZAxisSortedQ]

The list sortedStartingPolygons contains the 27 polygons to start with in the recursive building process of Brillouin
zones.

In[85]:= sortedStartingPolygons = sortPolygonsOnZAxis[polygonsOnZAxis];

Here, we color the sorted polygons on the z-axis from red to purple, with the red polygons being the ones nearest to the origin.
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In[86]:= Show[Graphics3D[MapIndexed[{Hue[#2[[1]]/30], #1}&,
               sortedStartingPolygons]],
     Lighting Ø False, Axes Ø True, PlotRange Ø All];

0 0.2 0.4

0
0.2

0.4

0.5

1

1.5

0
0.2

0.4

For building the Brillouin zones,  we start with a polygon from the list sortedStartingPolygons  and add at all edges
that are not on the boundary of the symmetry unit, the next innermost one. To have fast access to the polygons that meet at a
given edge, we use the Set-based hashing technique from above and build a function polygonsFromEdge. 

In[87]:= (* subsidiary definition of a function that returns 
   a list of directed edges of a given polygon *)
edges[Polygon[l_]] := Edge /@ Sort /@ 
               Partition[Append[l, First[l]], 2, 1]

In[89]:= edgesAndPolygons[polys_] :=
Module[{allEdges},
(* (all oriented) edges *)
allEdges = Union[Flatten[edges /@ polys]] ;
(* which polygon is connected to which edge *)
Clear[polygonsFromEdge];
(polygonsFromEdge[#] = {})& /@ allEdges;
Function[p, Map[(polygonsFromEdge[#] = {polygonsFromEdge[#], p})&,

            edges[p], {1}]] /@ polys;
(polygonsFromEdge[#] = Flatten[polygonsFromEdge[#]])& /@ allEdges;]

In[90]:= edgesAndPolygons[polygonsInUnit]; // Timing

Out[90]= 81.04 Second, Null<
As a result, the function polygonsFromEdge now has 2324 definitions.

In[91]:= DownValues[polygonsFromEdge] // Length

Out[91]= 2324

Here are some of these definitions.
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In[92]:= Take[DownValues[polygonsFromEdge], 3]

Out[92]= 9HoldPatternApolygonsFromEdgeAEdgeA990, 0, 1
ÅÅÅÅ2 =, 9 1

ÅÅÅÅ2 , 0, 1
ÅÅÅÅ2 ==EEE ß9PolygonA990, 0, 1

ÅÅÅÅ2 =, 9 1
ÅÅÅÅ2 , 1

ÅÅÅÅ2 , 1
ÅÅÅÅ2 =, 9 1

ÅÅÅÅ2 , 0, 1
ÅÅÅÅ2 ==E=,

HoldPatternApolygonsFromEdgeAEdgeA990, 0, 1
ÅÅÅÅ2 =, 9 1

ÅÅÅÅ2 , 1
ÅÅÅÅ2 , 1

ÅÅÅÅ2 ==EEE ß9PolygonA990, 0, 1
ÅÅÅÅ2 =, 9 1

ÅÅÅÅ2 , 1
ÅÅÅÅ2 , 1

ÅÅÅÅ2 =, 9 1
ÅÅÅÅ2 , 0, 1

ÅÅÅÅ2 ==E=,
HoldPatternApolygonsFromEdgeAEdgeA980, 0, 1<, 9 1

ÅÅÅÅ6 , 0, 7
ÅÅÅÅ6 ==EEE ß9PolygonA99 1

ÅÅÅÅ6 , 0, 7
ÅÅÅÅ6 =, 80, 0, 1<, 9 1

ÅÅÅÅ6 , 1
ÅÅÅÅ6 , 7

ÅÅÅÅ6 ==E==
Here is a list of the number of polygons that have one edge in common.

In[93]:= {#[[1]], Length[#]}& /@ Split[Sort[Length[Last[#]]& /@ 
                               DownValues[polygonsFromEdge]]]

Out[93]= 881, 180<, 82, 362<, 83, 189<, 84, 1274<,85, 37<, 86, 272<, 810, 7<, 812, 1<, 814, 2<<
Now, we must  implement a function nextPolygon  that,  given a polygon from a Brillouin zone and one of its  free edges,
selects  still  available  polygons  from  among  all  of  the  “innermost”  ones.  The  function  outsideNormal  is  an  auxiliary
function determining the outside normal of a given polygon (outside meaning pointing away from the origin). We could have
saved  this  information  from  the  beginning,  but  its  recalculation  is  fast  and  simple,  so  we  prefer  to  recalculate  it  instead
dealing with more complicated and more memory-consuming data structures.

In[94]:= outsideNormal[Polygon[l_]] :=
Module[{mp = Plus @@ l/Length[l], dir},

   dir = Cross[lP1T - mp, lP2T - mp];
   If[dir.mp < 0, dir = -dir];
   (* rewrite in nice form *)

           #/GCD @@ Abs[#]&[(LCM @@ Denominator[dir]) dir]]

In[95]:= nextPolygon::noPolygonsLeft = "Out of polygons at edge `1`.";
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In[96]:= (* in case not enough polygons were calculated *)
nextPolygon::noPolygonsLeft = "Out of polygons at edge `1`.";

nextPolygon[poly:Polygon[l_], edge:Edge[{p1_, p2_}]] :=
Module[{possiblePolys, dir1, dir2, dir3,
        polyMps, polygonsAndAngles},

   (* all still not used polygons at the current edge *)
   possiblePolys = polygonsFromEdge[edge];
   (* a crude safety hack for too high orders *)
   If[possiblePolys === {}, 

  Message[nextPolygon::noPolygonsLeft, edge]; Abort[]];
   (* make three orthogonal directions *)
   dir1 = [p2 - p1]; 
   mp = Plus @@ l/Length[l];
   dir2 = mp - p1; 
   dir2 = -Together[[dir2 - dir1.dir2 dir1]];
   dir3 =  Together[[outsideNormal[poly]]];
   (* the relative orientation of the polygons *)
   polyMps = {#, Plus @@ #P1T/Length[#P1T]}& /@ possiblePolys;
   polygonsAndAngles = {#P1T,

ArcTan[Together[(#P2T - p1).dir2],
   Together[(#P2T - p1).dir3]]}& /@ polyMps;

   (* the “next” polygon *)
   Sort[polygonsAndAngles, #1P2T < #2P2T&]P1, 1T]

Now, we can implement the last step: the actual recursive building process for the Brillouin zones. The function buildBrilÖ
louinZone contains a list of lists. Each sublist is of the form {polygon, freeEdgesOfThisPolygon}. As long as free edges
exist, we add them until the polygons fill the solid angle of the symmetry unit.

In[99]:= (* remove double copies of free edges *)
buildBrillouinZone[l_] :=
Module[{cond = First /@ Cases[Function[p,
    {#, Count[p, #]}& /@ Union[p]][Flatten[Last /@ l]], {_, 2}]},
     buildBrillouinZone[DeleteCases[l, 
                          Alternatives @@ cond, Infinity]] /; 
                                             cond =!= {}]

(* add polygons to the free edges of a particular polygon *)
buildBrillouinZone[{a___, b:{poly_, freeEdges_?(# =!= {}&)}, c___}] :=

buildBrillouinZone[{a, {First[b], {}}, addPolys[b], c}]

(* no free edges present anymore; take out the polygons *)
buildBrillouinZone[l:{{_, {}}..}] := First /@ l

We do  not  have  to  add  polygons  to edges  that  lie on  the  boundary  of the  unit.  The function  outerEdgeQ  tests  if  a given
edge is on a boundary.

In[105]:= outerEdgeQ[Edge[{{x1_, y1_, z1_}, {x2_, y2_, z2_}}]] :=
  (y1 == y2 == 0) || ((x1 == y1) && (x2 == y2)) ||
                     ((x1 == z1) && (x2 == z2))

After a polygon has been added to the current  Brillouin zone, it must  be taken out from the polygons memorized in polyÖ
gonsFromEdge. The function upDatePolygonsFromEdgeDefinitions is carrying out this updating process.

In[106]:= upDatePolygonsFromEdgeDefinitions[poly_] :=
 (polygonsFromEdge[#] =
    DeleteCases[polygonsFromEdge[#], poly])& /@ edges[poly]
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The main work in buildBrillouinZone  is done by the function addPolys.  For a given polygon and its free edges,  it
determines  which  polygons  are  the  next  innermost  neighboring  polygons  and  properly  updates  all  lists  of  free edges,  poly-
gons, and polygonsFromEdge.

In[107]:= addPolys[{poly_, freeEdges_}] :=
Module[{newPolygons, newEdges, doubleEdges, newFreeEdges, outerEdges},
(* the polygons innermost and having edge in common *)
newPolygons = Union[nextPolygon[poly, #]& /@ freeEdges];
(* the edges of these new polygons *)
newEdges = edges /@ newPolygons;
(* some of the new polygons might share a new edge *)
doubleEdges = First /@ Cases[
    Function[l, {#, Count[l, #]}& /@ Union[l]][
                           Flatten[newEdges, 1]], {_, 2}];
(* the old free edge is no longer a free edge *)
newFreeEdges = DeleteCases[newEdges,
                           Alternatives @@ freeEdges, {2}];
(* two of the new polygons might have an edge in common *)
newFreeEdges = DeleteCases[newFreeEdges,
                           Alternatives @@ doubleEdges, {2}];
(* some of the new edges might be outer edges *)
outerEdges = Union[Cases[newFreeEdges, _?outerEdgeQ, {2}]];
newFreeEdges = DeleteCases[newFreeEdges,
                          Alternatives @@ outerEdges, {2}];
(* now update the edgePolygon definitions *)
upDatePolygonsFromEdgeDefinitions /@ newPolygons;
(* return new borderline *)
Sequence @@ Transpose[{newPolygons, newFreeEdges}]]

Now, we can finally calculate the polygons forming the Brillouin zones. The polygons we have stored in polygonsInUnit
allow us to calculate  the first 25 Brillouin zones (its polygons inside the unit, respectively).  brillouinZonePolygonsÖ
SC[i] is a list of the polygons of the ith Brillouin zone of the simple cubic lattice.

In[108]:= Off[$MaxExtraPrecision::meprec];
Do[(* nearest polygon *)
   startPoly = sortedStartingPolygons[[i]];
   (* free edges of the nearest polygon *)
   freeStartEdges = Complement[#, 
                   Select[#, outerEdgeQ]]&[edges[startPoly]];
   upDatePolygonsFromEdgeDefinitions[startPoly];
   brillouinZonePolygonsSC[i] = 
          buildBrillouinZone[{{startPoly, freeStartEdges}}],
   {i, 25}] // Timing

Out[109]= 87.63 Second, Null<
Here are the number of polygons of the ith Brillouin zone in the unit shown.
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In[110]:= ListPlot[Table[{k, Length[brillouinZonePolygonsSC[k]]}, {k, 25}],
         PlotRange Ø All, Frame Ø True, Axes Ø False];
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4. Visualize the Brillouin Zones

Before making some pictures of Brillouin zones, let us check if the Brillouin zones calculated at the end of the last subsection
really  have  the  expected  volume.  The  function  volume  calculates  the  volume  of  the  polyhedron  bounded  outside  by  the
polygons of the Brillouin zones [9˜].

In[111]:= (* all together there are 48 units *)
volume[polys_List] := 48 Plus @@ (volume /@ polys);

(* the basic case *)
volume[Polygon[{p1_, p2_, p3_}]] :=
               volume[TrianglePyramid[{p1, p2, p3}]];

(* split polygons with more than three vertices into triangles *)
volume[Polygon[l_]] :=

Module[{mp = Plus @@ l/Length[l]},
Plus @@ (volume[TrianglePyramid[Append[#, mp]]]& /@

      Partition[Append[l, First[l]], 2, 1])]

(* the volume of a pyramid with triangular base *)
volume[TrianglePyramid[{p1_, p2_, p3_}]] :=

Abs[Cross[p1 - p2, p1 - p3].(p1 + p2 + p3)]/18

Here, the volumes are calculated. We see that all Brillouin (in the sense of the difference  of two consecutive  brillouinÖ
ZonePolygonsSC) zones have the same volume.

In[119]:= Table[volume[brillouinZonePolygonsSC[i]], 
    {i, Length[DownValues[brillouinZonePolygonsSC]]}]

Out[119]= 81, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12,
13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25<

For a  nice  picture  of  the Brillouin  zones,  we  do not  want  just  to display  the  individual  polygons  calculated.  It  would show
edges inside plane polygons  induced by the planes bounding the symmetry unit.  To avoid  this, we will display all  polygons
with the EdgeForm[]  directive  and instead  calculate  all edges.  To do this,  we test  if  two neighboring  polygons  are in the
same plane (this means if their normals are parallel). This must also be done across the boundaries of the unit under consider-
ation. The functions boundaryiEdgeQ determine if a given edge is on the unit boundary.
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In[120]:= boundary1EdgeQ[Edge[{{p1x_, p1y_, p1z_}, {p2x_, p2y_, p2z_}}]] :=
                                           p1y === p2y === 0;

boundary2EdgeQ[Edge[{{p1x_, p1y_, p1z_}, {p2x_, p2y_, p2z_}}]] :=
                                    p1x === p1y && p2x === p2y;
boundary3EdgeQ[Edge[{{p1x_, p1y_, p1z_}, {p2x_, p2y_, p2z_}}]] :=

                                  p1x === p1z && p2x === p2z;

inTheSamePlaneQ determines if the two polygons are in the same plane.

In[123]:= inTheSamePlaneQ[{Polygon[l1_], Polygon[l2_]}] := 
With[{normal1 = Cross[l1P1T - l1P2T, l1P1T - l1P3T],   

  normal2 = Cross[l2P1T - l2P2T, l2P1T - l2P3T]},
     (normal1.normal2)^2 === normal1.normal1 normal2.normal2]

The function visibleEdges finally generates all edges between polygons that do not belong into one plane and returns the
visible edges as explicit line primitives.

In[124]:= visibleEdges[unitPolys_] :=
Module[{unitPolyEdges, allEdgesV, boundary1Polys,

boundary2Polys, boundary3Polys, allPolys},
 (* all edges of the polygons *)
unitPolyEdges = {#, edges[#]}& /@ unitPolys;
allEdgesV = Union[Flatten[Last /@ unitPolyEdges]];
(* the neighboring polygons *)
{boundary1Polys, boundary2Polys, boundary3Polys} =
    Function[f, First /@ 
        Select[unitPolyEdges, MemberQ[#P2T, _?f]&]] /@ 
               {boundary1EdgeQ, boundary2EdgeQ, boundary3EdgeQ};
(* add mirrored polygons along the edges of the unit *)
augmentedPolys = 
{Apply[{#1, -#2, #3}&, boundary1Polys, {3}],
 Apply[{#2,  #1, #3}&, boundary2Polys, {3}],
 Apply[{#3,  #2, #1}&, boundary3Polys, {3}]};
allPolys = Flatten[{unitPolys, augmentedPolys}];
(* build polygonsFromEdgeV function *)
Clear[polygonsFromEdgeV];
(polygonsFromEdgeV[#] = {})& /@ allEdgesV;
Function[p, Map[(polygonsFromEdgeV[#] = {polygonsFromEdgeV[#], p})&,
       Intersection[edges[p], allEdgesV], {1}]] /@ allPolys;
(polygonsFromEdgeV[#] = Flatten[polygonsFromEdgeV[#]])& /@ allEdgesV; 
 If[inTheSamePlaneQ[polygonsFromEdgeV[#]], {}, Line @@ #]& /@ allEdgesV]

Until now, we have only the polygons and edges inside the symmetry unit. All other 47 equivalent sets of polygons and edges
are generated by the function makeAllCube. It recursively rotates and mirrors the polygons and edges from the unit.

In[125]:= makeAllCube[(pl:Polygon | Line)[l_]] :=
pl /@ Join[#, Apply[{#2, #3, #1}&, #, {2}],
               Apply[{#3, #1, #2}&, #, {2}]]&[
                Join[#, Apply[{#2, #1, -#3}&, #, {2}]]&[
                 Join[#, Apply[{#2, #1, #3}&, #, {2}]]&[
                  Join[#, Apply[{-#1, #2, #3}&, #, {2}]]&[
                       {l, Apply[{#1, -#2, #3}&, l, {1}]}]]]]

Now, finally, comes the moment the reader has been waiting for a long time: the actual pictures of the Brillouin zones. 
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In[126]:= showBrillouinZone[unitPolys_, color_, opts___] :=
Module[{unitEdges, allPolys, allEdges},

   (* the visible edges inside the unit *)
   unitEdges = visibleEdges[unitPolys];

(* make all polygons in all units *)
   allPolys = makeAllCube /@ unitPolys;

(* make all edges in all units *)
   allEdges = makeAllCube /@ Flatten[unitEdges];

(* show polygons and edges *)
   Show[Graphics3D[
    {EdgeForm[], Thickness[0.001], color, allPolys, allEdges}],

 opts, Boxed Ø False, PlotRange Ø All, SphericalRegion Ø True]]

In[127]:= Do[Show[GraphicsArray[
 Table[showBrillouinZone[brillouinZonePolygonsSC[4 k + l],
                         SurfaceColor[Hue[0.06], Hue[0.32], 2.1],
                         DisplayFunction -> Identity],
       {l, 4}]]], {k, 0, 5}]
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To see the complicated face structure of, say, the 25th zone more clearly we unfold the spherical polyhedron into a circle.

In[128]:= project[{x_, y_, z_}] := 
Module[{j = ArcTan[x, y], J = ArcCos[z/Sqrt[x^2 + y^2 + z^2]]}, 
        J {Cos[j], Sin[j]}]
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In[129]:= Show[Graphics[{Hue[Random[]], #}& /@ Partition[Map[project, 
With[{mp = Plus @@ #[[1]]/Length[#[[1]]]},
     Polygon[(mp + (1. - 10^-10)(# - mp))& /@ #[[1]]]]& /@ 
   Cases[showBrillouinZone[brillouinZonePolygonsSC[25],  Null,
     DisplayFunction -> Identity], _Polygon, Infinity], {-2}], 
       48]], AspectRatio -> Automatic];

To get a better view on the Brillouin zone as a whole, we make a “solid wireframe” based on the visible edges. The function
showSolidWireFrameBrillouinZone is implementing this construction.

In[130]:= showSolidWireFrameBrillouinZone[unitPolys_, color_, 
   inplaneContractionFactor_, radialContractionFactor_, opts___] :=
Module[{unitEdges, edgePolygonPairs, allPolys},

   (* the visible edges inside the unit *)
   unitEdges = visibleEdges[unitPolys];
   (* the edges of the polygons to be beamized *)
   edgePolygonPairs = Function[edge, 
      {edge, Select[unitPolys, MemberQ[edges[#], 
                    Edge @@ edge]&]}] /@ Flatten[unitEdges];
   (* make all beams *) allPolys = makeAllCube /@ 

 (Flatten[makeBeam[#, radialContractionFactor,
                      inplaneContractionFactor,
    Flatten[unitEdges]]& /@ edgePolygonPairs]);

   (* show polygons and edges *)
  Show[Graphics3D[{EdgeForm[], Thickness[0.001], 
                   color, allPolys}], opts, Boxed Ø False, 
       PlotRange Ø All, SphericalRegion Ø True]]

For a single  edge of a  given  polygon,  the  function makeBeam  generates  the explicit  polygons  that  form the  wireframe.  To
avoid intersecting polygons, we have to differentiate between edges that have a point with another edge in common and edges
that do not.
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In[131]:= makeBeam[{edge_, polys_List}, f1_, f2_, allVisisbleEdges_] :=
makeBeam[edge, #, f1, f2, allVisisbleEdges]& /@ polys;

makeBeam[Line[edge_], Polygon[l_], f1_, f2_, allVisisbleEdges_] :=
Module[{pos1 = Position[l, edgeP1T]P1, 1T,

pos2 = Position[l, edgeP2T]P1, 1T,
neighbor1, neighbor2, neighborEdge1,
neighborEdge2, innerPoints, edgeContracted,
innerPointsContracted},

(* the neighboring point of the edge under consideration *)
neighbor1 = Complement[Which[pos1 === 1, {lP-1T, lP2T},

                 pos1 === Length[l], {lP-2T, lP1T},
                 True, {lPpos1 - 1T, lPpos1 + 1T}],
           {edgeP2T}]P1T;

neighbor2 = Complement[Which[pos2 === 1, {lP-1T, lP2T},
                 pos2 === Length[l], {lP-2T, lP1T},
                 True, {lPpos2 - 1T, lPpos2 + 1T}],

               {edgeP1T}]P1T;
(* the two neighboring edges *)
neighborEdge1 = Line[Sort[{edgeP1T, neighbor1}]];
neighborEdge2 = Line[Sort[{edgeP2T, neighbor2}]];
(* inner points inside the polygon *)
innerPoints =
{If[MemberQ[allVisisbleEdges, neighborEdge1],

edgeP1T + (1 - f1)(neighbor1 + edgeP2T - 2edgeP1T),
neighbor1 + f1(edgeP1T - neighbor1)],      

 If[MemberQ[allVisisbleEdges, neighborEdge2],
edgeP2T + (1 - f1)(neighbor2 + edgeP1T - 2edgeP2T),
neighbor2 + f1(edgeP2T - neighbor2)]};

(* radially contracted edge *)
edgeContracted = Map[f2 #&, edge];
{neighbor1Contracted, neighbor2Contracted} =

           f2 {neighbor1, neighbor2};
(* inner points of the radially contracted polygon *)
innerPointsContracted =
{If[MemberQ[allVisisbleEdges, neighborEdge1],

edgeContractedP1T + (1 - f1)*
(neighbor1Contracted + edgeContractedP2T - 2 edgeContractedP1T),
neighbor1Contracted + f1*
(edgeContractedP1T - neighbor1Contracted)],      

 If[MemberQ[allVisisbleEdges, neighborEdge2],
edgeContractedP2T + (1 - f1)*
(neighbor2Contracted + edgeContractedP1T - 2 edgeContractedP2T),
neighbor2Contracted + f1(edgeContractedP2T - 
                          neighbor2Contracted)]};

(* polygons and lines forming the beams *)
{Polygon[Join[edge, Reverse[innerPoints]]],
 Polygon[Join[edgeContracted, Reverse[innerPointsContracted]]],
 Polygon[Join[innerPoints, Reverse[innerPointsContracted]]],
 Line[edge], Line[innerPoints],
 Line[edgeContracted], Line[innerPointsContracted],
 Line[{innerPointsP1T, innerPointsContractedP1T}],
 Line[{innerPointsP2T, innerPointsContractedP2T}]}]

To better see the functionality of makeBeams (which generates only the absolutely necessary polygons), we do not display a
whole  Brillouin  zone,  but  rather  only  the  parts  from  a  unit.  But  showSolidWireFrameBrillouinZone  was  imple-
mented to display the whole Brillouin zone. Fortunately, it is possible to manipulate programs easily in Mathematica, so that
we just  take  the  existing  definition  of  showSolidWireFrameBrillouinZone  and  modify  it  not  to  generate  all  other
unit parts.
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To better see the functionality of makeBeams (which generates only the absolutely necessary polygons), we do not display a
whole  Brillouin  zone,  but  rather  only  the  parts  from  a  unit.  But  showSolidWireFrameBrillouinZone  was  imple-
mented to display the whole Brillouin zone. Fortunately, it is possible to manipulate programs easily in Mathematica, so that
we just  take  the  existing  definition  of  showSolidWireFrameBrillouinZone  and  modify  it  not  to  generate  all  other
unit parts.

In[133]:= DownValues[showSolidWireFrameBrillouinZoneInUnit]  =
DownValues[showSolidWireFrameBrillouinZone] /.
  {showSolidWireFrameBrillouinZone Ø 
    showSolidWireFrameBrillouinZoneInUnit, makeAllCube Ø Identity};

The following picture shows the polygons of the beams inside the unit of the 17th Brillouin zone. For easier discrimination of
the polygons, we color them randomly.

In[134]:= Show[showSolidWireFrameBrillouinZoneInUnit[
  brillouinZonePolygonsSC[17], {}, 0.98, 0.88,
  PlotRange Ø All, DisplayFunction Ø Identity] /. 
  p_Polygon ß {SurfaceColor[Hue[Random[]], Hue[Random[]], 3Random[]], p},
  DisplayFunction Ø $DisplayFunction];

Here is the 13th Brillouin zone shown in the solid wireframe manner. This time, we color every polygon individually. To get
a smooth color variation, we subdivide the potentially thin and long edge polygons that form the beams.

In[135]:= subdividePolygon[Polygon[{p1_, p2_, p3_, p4_}], lMax_] :=
Module[{n},
       Apply[Polygon[Join[#1, Reverse[#2]]]&,

        Transpose[Partition[#, 2, 1]& /@
   If[(* which edge is the longest one? *)
      (p1 - p2).(p1 - p2) < (p2 - p3).(p2 - p3),
       n = Ceiling[Sqrt[(p2 - p3).(p2 - p3)]/lMax];
      {Table[p1 + i/n(p4 - p1), {i, 0, n}],

           Table[p2 + i/n(p3 - p2), {i, 0, n}]},
          n = Ceiling[Sqrt[(p1 - p2).(p1 - p2)] /lMax];
          {Table[p1 + i/n(p2 - p1), {i, 0, n}],
           Table[p4 + i/n(p3 - p4), {i, 0, n}]}]], {1}]]
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In[136]:= Show[showSolidWireFrameBrillouinZone[
   brillouinZonePolygonsSC[13], {}, 0.96, 0.9,
        PlotRange Ø All, DisplayFunction Ø Identity] /. 
        p_Polygon ß subdividePolygon[p, 0.1] /.
       (* rainbow coloring in a spherical coordinate system *)

Polygon[l_] ß 
{Module[{xmp, ymp, zmp, col, j, J},

            {xmp, ymp, zmp} = Plus @@ l/4;
             j = ArcTan[xmp, ymp];
             J = ArcCos[zmp/({xmp, ymp, zmp}.{xmp, ymp, zmp})];
             col = Hue[(1/2 + 1/2 Cos[J]^2) Cos[j/2]^2];

                SurfaceColor[col, col, 2.6]], Polygon[l]},
DisplayFunction Ø $DisplayFunction];

The Brillouin zones are not the “whole” polyhedra shown above, but rather  the thin objects between two successive polyhe-
dra. To get a better impression about them, we take two of them and slice them with the z = 0-plane.

In[137]:= hollowBrillouinZone =
{{makeAllCube /@ brillouinZonePolygonsSC[14],
  makeAllCube /@ Flatten[visibleEdges[brillouinZonePolygonsSC[14]]]},
  Map[(1 + 10^-6)#&,
  {makeAllCube /@ brillouinZonePolygonsSC[15],
   makeAllCube /@ Flatten[visibleEdges[
     brillouinZonePolygonsSC[15]]]}, {-2}]};
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In[138]:= Show[GraphicsArray[
Table[(* the rotation matrix *)
    = N[{{1, 0, 0}, {0, Cos[j], Sin[j]}, {0, -Sin[j], Cos[j]}}];

Show[Graphics3D[{EdgeForm[], Thickness[0.001],
                 SurfaceColor[Hue[0.48], Hue[0.21], 2.1],
         Sequence @@ Flatten[Map[.#&,
            hollowBrillouinZone, {-2}]]}],
     Boxed Ø False, PlotRange Ø {All, All, {-2, 0}},
     SphericalRegion Ø True, ViewPoint Ø {1, 1, 2},
     DisplayFunction Ø Identity], {j, 0, p/4, Pi/4/4}]]];

Another possibility to visualize their relative orientation is to stack some of them into each other and make holes in all of their
polygons to look inside.

In[139]:= makeHole[Polygon[l_], factor_] :=
Module[{mp = Plus @@ l/Length[l], innerPoints},
       innerPoints = (mp + factor(# - mp))& /@ l;

   (* form new polygons *)
      {MapThread[Polygon[Join[#1, Reverse[#2]]]&, 
       {Partition[Append[#, First[#]]&[l], 2, 1], 
        Partition[Append[#, First[#]]&[innerPoints], 2, 1]}],
      Line[Append[#, First[#]]]&[innerPoints],
      Line[Append[#, First[#]]]&[l]}]
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In[140]:= Show[Graphics3D[{EdgeForm[], Thickness[0.0001],
  Table[{SurfaceColor[Hue[Random[]], Hue[Random[]], 3Random[]],

 makeHole[#, 0.8]& /@ Flatten[makeAllCube /@ 
                      brillouinZonePolygonsSC[i]],
 makeAllCube /@ Flatten[visibleEdges[
      brillouinZonePolygonsSC[i]]]}, {i, 8}]}],

     Boxed Ø False, PlotRange Ø {All, All, {-2, 0}},
     SphericalRegion Ø True, ViewPoint Ø {1, 1, 2}];

We could  now  go  on  and  color  all  faces  in  one  color.  The  function  groupPolygonsIntoFaces  groups  the  individual
polygons into the list of polygons that form a face inside the unit.
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In[141]:= groupPolygonsIntoFaces[l_] :=
Module[{stillToBeUsedPolygons, coloredPolygonList,

subList, actualPoly, neighbors, parallelneighbors},
stillToBeUsedPolygons = l;
coloredPolygonList = {};
While[stillToBeUsedPolygons =!= {},

  subList = {stillToBeUsedPolygons[[1]]};
  stillToBeUsedPolygons = Rest[stillToBeUsedPolygons];
  While[(* select all neighbor polygons *)

parallelneighbors = Union[Flatten[
 Table[actualPoly = subList[[i]];

neighbors = Select[stillToBeUsedPolygons,
        (Intersection[edges[actualPoly],

                  edges[#]] =!= {})&];
        (* select parallel neighbor polygons *) 

 Select[neighbors, inTheSamePlaneQ[{actualPoly, #}]&],
                   {i, Length[subList]}]]];

    parallelneighbors =!= {} && stillToBeUsedPolygons =!= {},
(* update lists *)
subList = Flatten[{subList, parallelneighbors}];
stillToBeUsedPolygons = DeleteCases[stillToBeUsedPolygons,

 Alternatives @@ parallelneighbors]];
           AppendTo[coloredPolygonList, subList]];

 (* return list of lists with parallel polygons *)
coloredPolygonList]

The corresponding function showColoredBrillouinZone generates a graphic with the colored faces.

In[142]:= showColoredBrillouinZone[unitPolys_, opts___] :=
Module[{unitEdges, allPolys, allEdges},

(* the visible edges inside the unit *)
unitEdges = visibleEdges[unitPolys];
(* make all polygons in all units *)
allPolys = Map[makeAllCube,
                groupPolygonsIntoFaces[unitPolys], {2}];
   (* make all edges in all units *)
allEdges = makeAllCube /@ Flatten[unitEdges];
(* show polygons and edges *)
Show[Graphics3D[{EdgeForm[], Thickness[0.001], Hue[Random[]],
                 {SurfaceColor[Hue[Random[]],  Hue[Random[]],
                      3Random[]], #}& /@ allPolys, allEdges}],
     opts, Boxed Ø False, PlotRange Ø All, SphericalRegion Ø True]]

Here are three examples.
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In[143]:= showColoredBrillouinZone[brillouinZonePolygonsSC[11]];

In[144]:= showColoredBrillouinZone[brillouinZonePolygonsSC[16]];
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In[145]:= showColoredBrillouinZone[brillouinZonePolygonsSC[23]];

Enough playing with making pictures of Brillouin zones of a simple 3D cubic lattice; it is time go on to other lattices.

5. Brillouin Zones of a Body-Centered Lattice

Now that we have implemented all functions needed we just change the lattice point that defines the lattice and reevaluate the
various functions needed to calculate the Brillouin zones.

We start by  generating  the lattice points.  Because the reciprocal  lattice of a body-centered lattice  is a face-centered one,  we
have to use a face-centered lattice in the direct space now.

In[146]:= latticePointListBC[d_] :=
With[{n = Ceiling[d]},
Select[Union[Join[DeleteCases[
Flatten[Table[{i, j, k}, {i, -n, n}, {j, -n, n}, {k, -n, n}], 2],
                              {0, 0, 0}],

(* the points in the centers of the faces *)
Flatten[Table[{i, j, k} + {1, 1, 0}/2,
              {i, -n, n}, {j, -n, n}, {k, -n, n}], 2],
Flatten[Table[{i, j, k} + {1, 0, 1}/2,
              {i, -n, n}, {j, -n, n}, {k, -n, n}], 2],
Flatten[Table[{i, j, k} + {0, 1, 1}/2,
              {i, -n, n}, {j, -n, n}, {k, -n, n}], 2]]], #.# <= d^2&]]

In[147]:= maxDist = 3;
Length[latticePoints = latticePointListBC[maxDist]]

Out[148]= 458

We form all planes.

In[149]:= planes = Join[toPlane /@ latticePoints, symmetrySlicingPlanes];

Because we stored the tessellations of the planes with tessellatePlane, we remove all but the general definition.

In[150]:= DownValues[tessellatePlane] = DownValues[tessellatePlane]P-1T;
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We calculate all polygons in our unit.

In[151]:= polygonsInUnit = Flatten[Select[
  tessellatePlane1[#, maxDist/2], inUnitQ]& /@ latticePoints];

We single out the starting polygons on the z-axis.

In[152]:= sortedStartingPolygons =
  sortPolygonsOnZAxis[selectPolygonsOnZAxis[polygonsInUnit]];

In[153]:= Length[sortedStartingPolygons]

Out[153]= 38

We calculate the Brillouin zones.

In[154]:= edgesAndPolygons[polygonsInUnit];

In[155]:= Do[startPoly = sortedStartingPolygonsPiT;
   freeStartEdges = Complement[#, 
           Select[#, outerEdgeQ]]&[edges[startPoly]];
   upDatePolygonsFromEdgeDefinitions[startPoly];
   brillouinZonePolygonsBC[i] = 
        buildBrillouinZone[{{startPoly, freeStartEdges}}],
  {i, 25}]

And finally we visualize them.

In[156]:= Do[Show[GraphicsArray[
   Table[showBrillouinZone[brillouinZonePolygonsBC[4  k + l],
                           SurfaceColor[Hue[0.32], Hue[0.76], 1.9],
                           DisplayFunction -> Identity],
         {l, 4}]]], {k, 0, 5}]
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Let us again check their volumes—now that we have 6µ 1ÅÅÅÅ2 + 8µ 1ÅÅÅÅ8 = 4 lattice points in each cell, the volume is 1/4.

In[157]:= Table[volume[brillouinZonePolygonsBC[i]], {i, 25}]

Out[157]= 9 1
ÅÅÅÅ4 , 1

ÅÅÅÅ2 , 3
ÅÅÅÅ4 , 1, 5

ÅÅÅÅ4 , 3
ÅÅÅÅ2 , 7

ÅÅÅÅ4 , 2, 9
ÅÅÅÅ4 , 5

ÅÅÅÅ2 , 11
ÅÅÅÅÅÅÅ4 , 3,

13
ÅÅÅÅÅÅÅ4 , 7

ÅÅÅÅ2 , 15
ÅÅÅÅÅÅÅ4 , 4, 17

ÅÅÅÅÅÅÅ4 , 9
ÅÅÅÅ2 , 19

ÅÅÅÅÅÅÅ4 , 5, 21
ÅÅÅÅÅÅÅ4 , 11

ÅÅÅÅÅÅÅ2 , 23
ÅÅÅÅÅÅÅ4 , 6, 25

ÅÅÅÅÅÅÅ4 =
6. Brillouin Zones of a Face-Centered Lattice

Not much explanation is needed now that it is the third time we use the code.
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In[158]:= (* the lattice points to take into account *)
latticePointListFC[d_] :=
With[{n = Ceiling[d]},

 Select[Union[Join[DeleteCases[
 Flatten[Table[{i, j, k}, {i, -n, n}, {j, -n, n}, {k, -n, n}], 2],
                               {0, 0, 0}],
(* the points in the center of the cubes *)
 Flatten[Table[{i, j, k} + {1, 1, 1}/2,
               {i, -n, n}, {j, -n, n}, {k, -n, n}], 2]]],

    #.# <= d^2&]]

In[160]:= maxDist = 7/2;
Length[latticePoints = latticePointListFC[maxDist]]

Out[161]= 338

In[162]:= planes = Join[toPlane /@ latticePoints, symmetrySlicingPlanes];

In[163]:= DownValues[tessellatePlane] = DownValues[tessellatePlane]P-1T;
In[164]:= polygonsInUnit = Flatten[Select[

 tessellatePlane1[#, maxDist/2], inUnitQ]& /@ latticePoints];

In[165]:= sortedStartingPolygons = 
  sortPolygonsOnZAxis[selectPolygonsOnZAxis[polygonsInUnit]];

In[166]:= edgesAndPolygons[polygonsInUnit];

In[167]:= Do[startPoly = sortedStartingPolygonsPiT;
   freeStartEdges = Complement[#,
          Select[#, outerEdgeQ]]&[edges[startPoly]];
   upDatePolygonsFromEdgeDefinitions[startPoly];
   brillouinZonePolygonsFC[i] =
         buildBrillouinZone[{{startPoly, freeStartEdges}}],
   {i, 25}]

In[168]:= Do[Show[GraphicsArray[
   Table[showBrillouinZone[brillouinZonePolygonsFC[4  k + l],
                           SurfaceColor[Hue[0.45], Hue[0.87], 2.2],
                           DisplayFunction -> Identity],
         {l, 4}]]], {k, 0, 5}]
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Let us us again check their volumes—now that we have 8µ1/8+1µ1=2 lattice points in each cell, the volume is 1/2.
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In[169]:= Table[volume[brillouinZonePolygonsFC[i]], {i, 25}]

Out[169]= 9 1
ÅÅÅÅ2 , 1, 3

ÅÅÅÅ2 , 2, 5
ÅÅÅÅ2 , 3, 7

ÅÅÅÅ2 , 4, 9
ÅÅÅÅ2 , 5, 11

ÅÅÅÅÅÅÅ2 , 6,

13
ÅÅÅÅÅÅÅ2 , 7, 15

ÅÅÅÅÅÅÅ2 , 8, 17
ÅÅÅÅÅÅÅ2 , 9, 19

ÅÅÅÅÅÅÅ2 , 10, 21
ÅÅÅÅÅÅÅ2 , 11, 23

ÅÅÅÅÅÅÅ2 , 12, 25
ÅÅÅÅÅÅÅ2 =

This  ends  our  journey  through  the  world  of  Brillouin  zones.  The  (interested)  reader  now  can  go  on  and  can  calculate  and
visualize still higher order zones or extend the construction to hexagonal lattices or add Fermi spheres [540˜] or so on.
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