
Introduction and Orientation to
The Mathematica GuideBooks

0.1 Overview

0.1.1 Content Summaries
The Mathematica GuideBooks are published as four independent books: The Mathematica GuideBook to
Programming, The Mathematica GuideBook to Graphics, The Mathematica GuideBook to Numerics, and The
Mathematica GuideBook to Symbolics.

† The Programming volume deals with the structure of Mathematica expressions and with Mathematica as a
programming language. This volume includes the discussion of the hierarchical construction of all Mathematica
objects out of symbolic expressions (all of the form head[argument]), the ultimate building blocks of expres-
sions (numbers, symbols, and strings), the definition of functions, the application of rules, the recognition of
patterns and their efficient application, the order of evaluation, program flows and program structure, the
manipulation of lists (the universal container for Mathematica expressions of all kinds), as well as a number of
topics specific to the Mathematica programming language. Various programming styles, especially Mathematica’
s powerful functional programming constructs, are covered in detail.

† The Graphics volume deals with Mathematica’s two-dimensional (2D) and three-dimensional (3D) graphics.
The chapters of this volume give a detailed treatment on how to create images from graphics primitives, such as
points, lines, and polygons. This volume also covers graphically displaying functions given either analytically or
in discrete form. A number of images from the Mathematica Graphics Gallery are also reconstructed. Also
discussed is the generation of pleasing scientific visualizations of functions, formulas, and algorithms. A variety
of such examples are given.

† The Numerics volume deals with Mathematica’s numerical mathematics capabilities—the indispensable
sledgehammer tools for dealing with virtually any “real life” problem. The arithmetic types (fast machine, exact
integer, and rational, verified high-precision, and interval arithmetic) are carefully analyzed. Fundamental
numerical operations, such as compilation of programs, numerical Fourier transforms, minimization, numerical
solution of equations, ordinary/partial differential equations are analyzed in detail and are applied to a large
number of examples in the main text and in the solutions to the exercises.

† The Symbolics volume deals with Mathematica’s symbolic mathematical capabilities—the real heart of
Mathematica and the ingredient of the Mathematica software system that makes it so unique and powerful.
Structural and mathematical operations on systems of polynomials are fundamental to many symbolic calcula-
tions and are covered in detail. The solution of equations and differential equations, as well as the classical
calculus operations are exhaustively treated. In addition, this volume discusses and employs the classical

orthogonal polynomials and special functions of mathematical physics. To demonstrate the symbolic mathemat-
ics power, a variety of problems from mathematics and physics are discussed.

The four GuideBooks contain about 25,000 Mathematica inputs, representing more than 70,000 lines of com-
mented Mathematica code. (For the reader already familiar with Mathematica, here is a more precise measure:
The LeafCount of all inputs would be about 800,000 when collected in a list.) The GuideBooks also have
more than 4,000 graphics, 100 animations, 8,000 references, and 1,000 exercises. More than 10,000 hyperlinked
index entries and hundreds of hyperlinks from the overview sections connect all parts in a convenient way. The
evaluated notebooks of all four volumes have a cumulative file size of about 10 GB. Although these numbers
may sound large, the Mathematica GuideBooks actually cover only a portion of Mathematica’s functionality and
features and give only a glimpse into the possibilities Mathematica offers to generate graphics, solve problems,
model systems, and discover new identities, relations, and algorithms. The Mathematica code is explained in
detail throughout all chapters. More than 10,000 comments are scattered throughout all inputs and code
fragments.

0.1.2 Relation of the Four Volumes
The four volumes of the GuideBooks are basically independent, in the sense that readers familiar with Mathemat-
ica programming can read any of the other three volumes. But a solid working knowledge of the main topics
discussed in The Mathematica GuideBook to Programming—symbolic expressions, pure functions, rules and
replacements, list manipulations—is required for the Graphics, Numerics, and Symbolics volumes. Compared to
these three volumes, the Programming volume might appear to be a bit “dry”. But similar to learning a foreign
language, before being rewarded with the beauty of novels or a poem, one has to sweat and study. The whole
suite of graphical capabilities and all of the mathematical knowledge in Mathematica are accessed and applied
through lists, patterns, rules, and pure functions, the material discussed in the Programming volume.

Naturally, graphics are the center of attention of the The Mathematica GuideBook to Graphics. While in the
Programming volume some plotting and graphics for visualization are used, graphics are not crucial for the
Programming volume. The reader can safely skip the corresponding inputs to follow the main programming
threads. The Numerics and Symbolics volumes, on the other hand, make heavy use of the graphics knowledge
acquired in the Graphics volume. Hence, the prerequisites for the Numerics and Symbolics volumes are a good
knowledge of Mathematica’s programming language and of its graphics system.

The Programming volume contains only a few percent of all graphics, the Graphics volume contains about
two-thirds, and the Numerics and Symbolics volume, about one-third of the overall 4,000+ graphics. The
Programming and Graphics volume use some mathematical commands, but they restrict the use to a relatively
small number (especially Expand, Factor, Integrate, Solve). And the use of the function N for numerical
ization is unavoidable for virtually any “real life” application of Mathematica. The last functions allow us to
treat some mathematically not uninteresting examples in the Programming and Graphics volumes. In addition to
putting these functions to work for nontrivial problems, a detailed discussion of the mathematics functions of
Mathematica takes place exclusively in the Numerics and Symbolics volumes.

The Programming and Graphics volumes contain a moderate amount of mathematics in the examples and
exercises, and focus on programming and graphics issues. The Numerics and Symbolics volumes contain a
substantially larger amount of mathematics.

Although printed as four books, the fourteen individual chapters (six in the Programming volume, three in the
Graphics volume, two in the Numerics volume, and three in the Symbolics volume) of the Mathematica Guide-
Books form one organic whole, and the author recommends a strictly sequential reading, starting from Chapter 1
of the Programming volume and ending with Chapter 3 of the Symbolics volume for gaining the maximum

xxiv Introduction

benefit. The electronic component of each book contains the text and inputs from all the four GuideBooks,
together with a comprehensive hyperlinked index. The four volumes refer frequently to one another.

0.1.3 Chapter Structure
A rough outline of the content of a chapter is the following:

† The main body discusses the Mathematica functions belonging to the chapter subject, as well their options and
attributes. Generically, the author has attempted to introduce the functions in a “natural order”. But surely one
cannot be axiomatic with respect to the order. (Such an order of the functions is not unique, and the author
intentionally has “spread out” the introduction of various Mathematica functions across the four volumes.) With
the introduction of a function, some small examples of how to use the functions and comparisons of this function
with related ones are given. These examples typically (with the exception of some visualizations in the Program-
ming volume) incorporate functions already discussed. The last section of a chapter often gives a larger example
that makes heavy use of the functions discussed in the chapter.

† A programmatically constructed overview of each chapter functions follows. The functions listed in this
section are hyperlinked to their attributes and options, as well as to the corresponding reference guide entries of
The Mathematica Book.

† A set of exercises and potential solutions follow. Because learning Mathematica through examples is very
efficient, the proposed solutions are quite detailed and form up to 50% of the material of a chapter.

† References end the chapter.

Note that the first few chapters of the Programming volume deviate slightly from this structure. Chapter 1 of the
Programming volume gives a general overview of the kind of problems dealt with in the four GuideBooks. The
second, third, and fourth chapters of the Programming volume introduce the basics of programming in Mathemat-
ica. Starting with Chapters 5 of the Programming volume and throughout the Graphics, Numerics, and Symbol-
ics volume, the above-described structure applies.

In the 14 chapters of the GuideBooks the author has chosen a “we” style for the discussions of how to proceed in
constructing programs and carrying out calculations to include the reader tightly.

0.1.4 Code Presentation Style
The typical style of a unit of the main part of a chapter is: Define a new function, discuss its arguments, options,
and attributes, and then give examples of its usage. The examples are virtually always Mathematica inputs and
outputs. The majority of inputs is in InputForm are the notebooks. On occasion StandardForm is also
used. Although StandardForm mimics classical mathematics notation and makes short inputs more readable,
for “program-like” inputs, InputForm is typically more readable and easier and more natural to align. For the
outputs, StandardForm is used by default and occasionally the author has resorted to InputForm or
FullForm to expose digits of numbers and to TraditionalForm for some formulas. Outputs are mostly not
programs, but nearly always “results” (often mathematical expressions, formulas, identities, or lists of numbers
rather than program constructs). The world of Mathematica users is divided into three groups, and each of them
has a nearly religious opinion on how to format Mathematica code [1], [2].

The author follows the InputForm cult(ure) and hopes that the Mathematica users who do everything in either
StandardForm or TraditionalForm will bear with him. If the reader really wants to see all code in either
StandardForm or TraditionalForm, this can easily be done with the Convert To item from the Cell

Introduction xxv

menu. (Note that the relation between InputForm and StandardForm is not symmetric. The InputForm
cells of this book have been line-broken and aligned by hand. Transforming them into StandardForm or
TraditionalForm cells works well because one typically does not line-break manually and align Mathemat-
ica code in these cell types. But converting StandardForm or TraditionalForm cells into InputForm
cells results in much less pleasing results.)

In the inputs, special typeset symbols for Mathematica functions are typically avoided because they are not
monospaced. But the author does occasionally compromise and use Greek, script, Gothic, and doublestruck
characters.

In a book about a programming language, two other issues come always up: indentation and placement of the
code.
† The code of the GuideBooks is largely consistently formatted and indented. There are no strict guidelines or
even rules on how to format and indent Mathematica code. I hope the reader will find the author’s formatting
style readable. It is a compromise between readability (mental parsabililty) and space conservation, so that the
printed version of the Mathematica GuideBook matches closely the electronic version.
† Because of the large number of examples, a rather imposing amount of Mathematica code is presented. Should
this code be present only on the disk, or also in the printed book? If it is in the printed book, should it be at the
position where the code is used or at the end of the book in an appendix? Many authors of Mathematica articles
and books have strong opinions on this subject. Because the main emphasis of the Mathematica GuideBooks is
on solving problems with Mathematica and not on the actual problems, the GuideBooks give all of the code at
the point where it is needed in the printed book, rather than “hiding” it in packages and appendices. In addition
to being more straightforward to read and conveniently allowing us to refer to elements of the code pieces, this
placement makes the correspondence between the printed book and the notebooks close to 1:1, and so working
back and forth between the printed book and the notebooks is as straightforward as possible.

0.2 Requirements

0.2.1 Hardware and Software
Throughout the GuideBooks, it is assumed that the reader has access to a computer running a current version of
Mathematica (version 4.0 or newer). For readers without access to a licensed copy of Mathematica, it is possible
to view all of the material on the disk using MathReader. (MathReader is downloadable from
www.wolfram.com/mathreader.)

The files of the GuideBooks are relatively large, altogether more than 10 GB. This is also the amount of hard
disk space needed to store uncompressed versions of the notebooks. To view the notebooks comfortably, the
reader’s computer needs 64 MB RAM; to evaluate the evaluation units of the notebooks 512 MB RAM or more
is recommended.

In the GuideBooks, a large number of animations are generated. Although they need more memory than single
pictures, they are easy to create, to animate, and to store on typical year-2003 hardware, and they provide a lot of
joy.

xxvi Introduction

0.2.2 Reader Prerequisites
Although prior Mathematica knowledge is not needed to read The Mathematica GuideBook to Programming, it
is assumed that the reader is familiar with basic actions in the Mathematica front end, including entering Greek
characters using the keyboard, copying and pasting cells, and so on. Freely available tutorials on these (and
other) subjects can be found at http://library.wolfram.com.

For a complete understanding of most of the GuideBooks examples, it is desirable to have a background in
mathematics, science, or engineering at about the bachelor’s level or above. Familiarity with mechanics and
electrodynamics is assumed. Some examples and exercises are more specialized, for instance, from quantum
mechanics, finite element analysis, statistical mechanics, solid state physics, number theory, and other areas. But
the GuideBooks avoid very advanced (but tempting) topics such as renormalization groups [6], parquet approxi-
mations [25], and modular moonshines [14]. (Although Mathematica can deal with such topics, they do not fit
the character of the Mathematica GuideBooks but rather the one of a Mathematica Topographical Atlas [a
monumental work to be carried out by the Mathematica–Bourbakians of the 21st century]).

Each scientific application discussed has a set of references. The references should easily give the reader both an
overview of the subject and pointers to further references.

0.3 What the GuideBooks Are and What They Are Not

0.3.1 Doing Computer Mathematics
As discussed in the Preface, the main goal of the GuideBooks is to demonstrate, showcase, teach, and exemplify
scientific problem solving with Mathematica. An important step in achieving this goal is the discussion of
Mathematica functions that allow readers to become fluent in programming when creating complicated graphics
or solving scientific problems. This again means that the reader must become familiar with the most important
programming, graphics, numerics, and symbolics functions, their arguments, options, attributes, and a few of
their time and space complexities. And the reader must know which functions to use in each situation.

The GuideBooks treat only aspects of Mathematica that are ultimately related to “doing mathematics”. This
means that the GuideBooks focus on the functionalities of the kernel rather than on the THOSE ones of the front
end. The knowledge required to use the front end to work with the notebooks can easily be gained by reading the
corresponding chapters of the online documentation of Mathematica. Some of the subjects that are treated either
lightly or not at all in the GuideBooks include the basic use of Mathematica (starting the program, features, and
special properties of the notebook front end [16]), typesetting, the preparation of packages, external file opera-
tions, the communication of Mathematica with other programs via MathLink, special formatting and string
manipulations, computer- and operating system-specific operations, audio generation, and commands available
in various packages. By packages, those distributed with Mathematica as well as those available from Math-
Source (http://library.wolfram.com/database/MathSource) and commercial sources, such as MathTensor for
doing general relativity calculations (http://smc.vnet.net/MathTensor.html) or FeynCalc for doing high-energy
physics calculations (http://www.feyncalc.com) are meant. This means, in particular, that probability and
statistical calculations are barely touched on because most of the relevant commands are contained in the
packages. The GuideBooks make little or no mention of the machine-dependent possibilities offered by the
various Mathematica implementations. For this information, see the documentation that come with Mathemat-
ica.

Introduction xxvii

Mathematical and physical remarks introduce certain subjects and formulas to make the associated Mathematica
implementations easier to understand. These remarks are not meant to provide a deep understanding of the
(sometimes complicated) physical model or underlying mathematics; some of these remarks intentionally
oversimplify matters.

The reader should examine all Mathematica inputs and outputs carefully. Sometimes, the inputs and outputs
illustrate little-known or seldom-used aspects of Mathematica commands. Moreover, for the efficient use of
Mathematica, it is very important to understand the possibilities and limits of the built-in commands. Many
commands in Mathematica allow different numbers of arguments. When a given command is called with fewer
than the maximum number of arguments, an internal (or user-defined) default value is used for the missing
arguments. For most of the commands, the maximum number of arguments and default values are discussed.

When solving problems, the GuideBooks generically use a “straightforward” approach. This means they are not
using particularly clever tricks to solve problems, but rather direct, possibly computationally more expensive,
approaches. (From time to time, the GuideBooks even make use of a “brute force” approach.) The motivation is
that when solving new “real life” problems a reader encounters in daily work, the “right mathematical trick” is
seldom at hand. Nevertheless, the reader can more often than not rely on Mathematica being powerful enough to
often succeed in using a straightforward approach. But attention is paid to Mathematica-specific issues to find
time- and memory-efficient implementations—something that should be taken into account for any larger
program.

As already mentioned, all larger pieces of code in this book have comments to explain the individual steps
carried out in the calculations. Many smaller pieces of code have comments when needed to expedite the
understanding of how they work. This enables the reader to easily change and adapt the code pieces presented.
Sometimes, when the translation from traditional mathematics into Mathematica is trivial, or when the author
wants to emphasize certain aspects of the code, we let the code “speak for itself”. While paying attention to
efficiency, the GuideBooks only occasionally go into the computational complexity ([8], [38], and [7]) of the
given implementations. The implementation of very large, complicated suites of algorithms is not the purpose of
the GuideBooks. The Mathematica packages included with Mathematica and the ones at MathSource
(http://library.wolfram.com/database/MathSource) offer a rich variety of self-study material on building large
programs. Most general guidelines for writing code for scientific calculations (like descriptive variable names
and modularity of code; see, e.g., [19] for a review) apply also to Mathematica programs.

The programs given in a chapter typically make use of Mathematica functions discussed in earlier chapters.
Using commands from later chapters would sometimes allow for more efficient techniques. Also, these programs
emphasize the use of commands from the current chapter. So, for example, instead of list operation, from a
complexity point of view, hashing techniques or tailored data structures might be preferable. All subsections and
sections are “self-contained” (meaning that no other code than the one presented there is needed to evaluate the
subsections and sections). The price for this “self-containedness” is that from time to time some code has to be
repeated (such as manipulating polygons or forming random permutations of lists) instead of delegating such
programming constructs to a package. Because this repetition could be construed as boring, the author typically
uses a slightly different implementation to achieve the same goal.

xxviii Introduction

0.3.2 Programming Paradigms
In the GuideBooks, the author wants to show the reader that Mathematica supports various programming
paradigms and also show that, depending on the problem under consideration and the goal (e.g., solution of a
problem, test of an algorithm, development of a program), each style has its advantages and disadvantages. (For
a general discussion concerning programming styles, see [3], [39], [22], [30], [15], and [9].) Mathematica
supports a functional programming style. Thus, in addition to classical procedural programs (which are often less
efficient and less elegant), programs using the functional style are also presented. In the first volume of the
Mathematica GuideBooks, the programming style is usually dictated by the types of commands that have been
discussed up to that point. A certain portion of the programs involve recursive, rule-based programming. The
choice of programming style is, of course, partially (ultimately) a matter of personal preference. The GuideBooks’
main aim is to explain the operation, limits, and efficient application of the various Mathematica commands. For
certain commands, this dictates a certain style of programming. However, the various programming styles, with
their advantages and disadvantages, are not the main concern of the GuideBooks. In working with Mathematica,
the reader is likely to use different programming styles depending if one wants a quick one-time calculation or a
routine that will be used repeatedly. So, for a given implementation, the program structure may not always be the
most elegant, fastest, or “prettiest”.

The GuideBooks are not a substitute for the study of The Mathematica Book [43]
http://documents.wolfram.com/v4). It is impossible to acquire a deeper (full) understanding of Mathematica
without a thorough study of this book (reading it twice from the first to the last page is highly recommended). It
defines the language and the spirit of Mathematica. The reader will probably from time to time need to refer to
parts of it, because not all commands are discussed in the GuideBooks. However, the story of what can be done
with Mathematica does not end with the examples shown in The Mathematica Book. The Mathematica Guide-
Books go beyond The Mathematica Book. They present larger programs for solving various problems and
creating complicated graphics. In addition, the GuideBooks discuss a number of commands that are not or are
only fleetingly mentioned in the manual (e.g., some specialized methods of mathematical functions and functions
from the Developer` and Experimental` contexts), but which the author finds important. In the note-
books, the author gives special emphasis to discussions, remarks, and applications relating to several commands
that are typical for Mathematica but not for most other programming languages, e.g., Map, MapAt, MapIng
dexed, Distribute, Apply, Replace, ReplaceAll, Inner, Outer, Fold, Nest, NestList,
FixedPoint, FixedPointList, and Function. These commands allow to write exceptionally elegant,
fast, and powerful programs. All of these commands are discussed in The Mathematica Book and others that deal
with programming in Mathematica (e.g., [31], [32], and [40]). However, the author’s experience suggests that a
deeper understanding of these commands and their optimal applications comes only after working with Mathemat-
ica in the solution of more complicated problems.

Both the printed book and the electronic component contain material that is meant to teach in detail how to use
Mathematica to solve problems, rather than to present the underlying details of the various scientific examples. It
cannot be overemphasized that to master the use of Mathematica, its programming paradigms and individual
functions, the reader must experiment; this is especially important, insightful, easily verifiable, and satisfying
with graphics, which involve manipulating expressions, making small changes, and finding different approaches.
Because the results can easily be visually checked, generating and modifying graphics is an ideal method to learn
programming in Mathematica.

Introduction xxix

0.4 Exercises and Solutions

0.4.1 Exercises
Each chapter includes a set of exercises and a detailed solution proposal for each exercise. When possible, all of
the purely Mathematica-programming related exercises (these are most of the exercises of the Programming
volume) should be solved by every reader. The exercises coming from mathematics, physics, and engineering
should be solved according to the reader’s interest. The most important Mathematica functions needed to solve a
given problem are generally those of the associated chapter.

For a rough orientation about the content of an exercise, the subject is included in its title. The relative degree of
difficulty is indicated by level superscript of the exercise number (L1 indicates easy, L2 indicates medium, and L3

indicates difficult). The author’s aim was to present understandable interesting examples that illustrate the
Mathematica material discussed in the corresponding chapter. Some exercises were inspired by recent research
problems; the references given allow the interested reader to dig deeper into the subject.

The exercises are intentionally not hyperlinked to the corresponding solution. The independent solving of the
exercises is an important part of learning Mathematica.

0.4.2 Solutions
The GuideBooks contain solutions to each of the more than 1,000 exercises. Many of the techniques used in the
solutions are not just one-line calls to built-in functions. It might well be that with further enhancements, a future
version of Mathematica might be able to solve the problem more directly. (But due to different forms of some
results returned by Mathematica, some problems might also become more challenging.) The author encourages
the reader to try to find shorter, more clever, faster (in terms of runtime as well complexity), more general, and
more elegant solutions. Doing various calculations is the most effective way to learn Mathematica. A proper
Mathematica implementation of a function that solves a given problem often contains many different elements.
The function(s) should have sensibly named and sensibly behaving options; for various (machine numeric,
high-precision numeric, symbolic) inputs different steps might be required; shielding against inappropriate input
might be needed; different parameter values might require different solution strategies and algorithms, helpful
error and warning messages should be available. The returned data structure should be intuitive and easy to
reuse; to achieve a good computational complexity, nontrivial data structures might be needed, etc. Most of the
solutions do not deal with all of these issues, but only with selected ones and thereby leave plenty of room for
more detailed treatments; as far as limit, boundary, and degenerate cases are concerned, they represent an outline
of how to tackle the problem. Although the solutions do their job in general, they often allow considerable
refinement and extension by the reader.

The reader should consider the given solution to a given exercise as a proposal; quite different approaches are
often possible and sometimes even more efficient. The routines presented in the solutions are not the most
general possible, because to make them foolproof for every possible input (sensible and nonsensical, evaluated
and unevaluated, numerical and symbolical), the books would have had to go considerably beyond the mathemati-
cal and physical framework of the GuideBooks. In addition, few warnings are implemented for improper or
improperly used arguments. The graphics provided in the solutions are mostly subject to a long list of refine-
ments. Although the solutions do work, they are often sketchy and can be considerably refined and extended by
the reader. This also means that the provided solutions to the exercises programs are not always very suitable for

xxx Introduction

solving larger classes of problems. To increase their applicability would require considerably more code. Thus, it
is not guaranteed that given routines will work correctly on related problems. To guarantee this generality and
scalability, one would have to protect the variables better, implement formulas for more general or specialized
cases, write functions to accept different numbers of variables, add type-checking and error-checking functions,
and include corresponding error messages and warnings.

To simplify working through the solutions, the various steps of the solution are commented and are not always
not packed in a Module or Block. In general, only functions that are used later are packed. For longer
calculations, such as those in some of the exercises, this was not feasible and intended. The arguments of the
functions are not always checked for their appropriateness as is desirable for robust code. But, this makes it
easier for the user to test and modify the code.

0.5 The Books Versus the Electronic Components

0.5.1 Working with the Notebooks
Each volume of the GuideBooks comes with a multiplatform DVD, containing fourteen main notebooks tailored
for Mathematica 4 and compatible with Mathematica 5. Each notebook corresponds to a chapter from the
printed books. (To avoid large file sizes of the notebooks, all animations are located in the Animations directory
and not directly in the chapter notebooks.) The chapters (and so the corresponding notebooks) contain a detailed
description and explanation of the Mathematica commands needed and used in applications of Mathematica to
the sciences. Discussions on Mathematica functions are supplemented by a variety of mathematics, physics, and
graphics examples. The notebooks also contain complete solutions to all exercises. Forming an electronic book,
the notebooks also contain all text, as well as fully typeset formulas, and reader-editable and reader-changeable
input. (Readers can copy, paste, and use the inputs in their notebooks.) In addition to the chapter notebooks, the
DVD also includes a navigation palette and fully hyperlinked table of contents and index notebooks. The
Mathematica notebooks corresponding to the printed book are fully evaluated. The evaluated chapter notebooks
also come with hyperlinked overviews; these overviews are not in the printed book.

When reading the printed books, it might seem that some parts are longer than needed. The reader should keep in
mind that the primary tool for working with the Mathematica kernel are Mathematica notebooks and that on a
computer screen and there “length does not matter much”. The GuideBooks are basically a printout of the
notebooks, which makes going back and forth between the printed books and the notebooks very easy. The
GuideBooks give large examples to encourage the reader to investigate various Mathematica functions and to
become familiar with Mathematica as a system for doing mathematics, as well as a programming language.
Investigating Mathematica in the accompanying notebooks is the best way to learn its details.

To start viewing the notebooks, open the table of contents notebook TableOfContents.nb. Mathematica note-
books can contain hyperlinks, and all entries of the table of contents are hyperlinked. Navigating through one of
the chapters is convenient when done using the navigator palette GuideBooksNavigator.nb.

When opening a notebook, the front end minimizes the amount of memory needed to display the notebook by
loading it incrementally. Depending on the reader’s hardware, this might result in a slow scrolling speed.
Clicking the “Load notebook cache” button of the GuideBooksNavigator palette speeds this up by loading the
complete notebook into the front end.

For the vast majority of sections, subsections, and solutions of the exercises, the reader can just select such a
structural unit and evaluate it (at once) on a year-2003 computer (¥512 MB RAM) typically in a matter of

Introduction xxxi

minutes. (On a pre-OSX Macintosh system, it might be necessary to increase the default memory sizes given for
the Mathematica kernel and the front end.) Some sections and solutions containing many graphics may need
hours of computation time. Also, more than 100 pieces of code run hours, even days. The inputs that are very
memory intensive or produce large outputs and graphics are in inactive cells that can be activated by clicking the
adjacent button. Because of potentially overlapping variable names between various sections and subsections,
the author advises the reader not to evaluate an entire chapter at once.

The Overview Section of the chapters is set up for a front end and kernel running on the same computer and
having access to the same file system. When using a remote kernel, the directory specification for the package
Overview.m must be changed accordingly.

References can be conveniently extracted from the main text by selecting the cell(s) that refer to them (or parts of
a cell) and then clicking the “Extract References” button. A new notebook with the extracted references will then
appear.

The notebooks contain color graphics. (To rerender the pictures with a greater color depth or at a larger size,
choose Rerender Graphics from the Cell menu.) With some of the used colors, black-and-white printouts
would occasionally give low-contrast results. For better black-and-white printouts of these graphics, the author
recommends setting the ColorOutput option of the relevant graphics function to GrayLevel. The note-
books with animations (in the printed book, animations are typically printed as an array of about 10 to 20
individual graphics) typically contain between 60 and 120 frames. Rerunning the corresponding code with a
large number of frames will allow the reader to generate smoother and longer-running animations.

Because many cell styles used in the notebooks are unique to the GuideBooks, when copying expressions and
cells from the GuideBooks notebooks to other notebooks, one should first attach the style sheet notebook
GuideBooksStylesheet.nb to the destination notebook, or define the needed styles in the style sheet of the
destination notebook.

0.5.2 Reproducibility of the Results
The 14 chapter notebooks contained in the electronic version of the GuideBooks were run under Mathematica 4
on a 2 GHz Intel Linux computer with 2 GB RAM. They need more than 100 hours of evaluation time. (This
does not include the evaluation of the currently unevaluatable parts of code after the Make Input buttons.) For
most subsections and sections, 512 MB RAM are recommended for a fast and smooth evaluation “at once”
(meaning the reader can select the section or subsection, and evaluate all inputs without running out of memory
or clearing variables) and the rendering of the generated graphic in the front end. Some subsections and sections
need more memory when run. To reduce these memory requirements, the author recommends restarting the
Mathematica kernel inside these subsections and sections, evaluating the necessary definitions, and then
continuing. This will allow the reader to evaluate all inputs.

In general, regardless of the computer, with the same version of Mathematica, the reader should get the same
results as shown in the notebooks. (The author has tested the code on Sun and Intel-based Linux computers, but
this does not mean that some code might not run as displayed (because of different configurations, stack size
settings, etc., but the disclaimer from the Preface applies everywhere). If an input does not work on a particular
machine, please inform the author. Some deviations from the results given may appear because of the following:
† Inputs involving the function Random[…] in some form. (Often SeedRandom to allow for some kind of
reproducibility and randomness at the same time is employed.)
† Mathematica commands operating on the file system of the computer, or make use of the type of computer
(such inputs need to be edited using the appropriate directory specifications).
† Calculations showing some of the differences of floating-point numbers and the machine-dependent representa-
tion of these on various computers.

xxxii Introduction

† Pictures using various fonts and sizes because of their availability (or lack thereof) and shape on different
computers.
† Calculations involving Timing because of different clock speeds, architectures, operating systems, and
libraries.
† Formats of results depending on the actual window width and default font size. (Often, the corresponding
inputs will contain Short.)

Using anything other than Mathematica Version 4.0 might also result in different outputs. Examples of results
that change form, but are all mathematically correct and equivalent, are the parameter variables used in underde-
termined systems of linear equations, the form of the results of an integral, and the internal form of functions like
InterpolatingFunction and CompiledFunction. Some inputs might no longer evaluate the same
way because functions from a package were used and these functions are potentially built-in functions in a later
Mathematica version. Mathematica is a very large and complicated program that is constantly updated and
improved. Some of these changes might be design changes, superseded functionality, or potentially regressions,
and as a result, some of the inputs might not work at all or give unexpected results in future versions of
Mathematica.

0.6 Style and Design Elements

0.6.1 Text and Code Formatting
The GuideBooks are divided into chapters. Each chapter consists of several sections, which frequently are further
subdivided into subsections. General remarks about a chapter or a section are presented in the sections and
subsections numbered 0. (These remarks usually discuss the structure of the following section and give teasers
about the usefulness of the functions to be discussed.) Also, sometimes these sections serve to refresh the
discussion of some functions already introduced earlier.

Following the style of The Mathematica Book [43], the GuideBooks use the following fonts: For the main text,
Times; for Mathematica inputs and built-in Mathematica commands, Courier plain (like Plot); and for
user-supplied arguments, Times italic (like userArgument1). Built-in Mathematica functions are introduced in
the following style:

MathematicaFunctionToBeIntroduced[typeIndicatingUserSuppliedArgument(s)]
is a description of the built-in command MathematicaFunctionToBeIntroduced upon its first
appearance. A definition of the command, along with its parameters is given. Here, typeIndicatingUserSupplied-
Argument(s) is one (or more) user-supplied expression(s) and may be written in an abbreviated form or in a
different way for emphasis.

The actual Mathematica inputs and outputs appear in the following manner (as mentioned above, virtually all
inputs are given in InputForm).

(* A comment. It will be/is ignored as Mathematica input:
 Return only one of the solutions *)
Last[Solve[{x^2 - y == 1, x - y^2 == 1}, {x, y}]]

When referring in text to variables of Mathematica inputs and outputs, the following convention is used: Fixed,
nonpattern variables (including local variables) are printed in Courier plain (the equations solved above con-

Introduction xxxiii

tained the variables x and y). User supplied arguments to built-in or defined functions with pattern variables are
printed in Times italic. The next input defines a function generating a pair of polynomial equations in x and y.

equationPair[x_, y_] := {x^2 - y == 1, x - y^2 == 1}

x and y are pattern variables (same letters, but different font from the actual code fragments x_ and y_) that can
stand for any argument. Here we call the function equationPair with the two arguments u + v and w - z.

equationPair[u + v, w - z]

Occasionally, explanation about a mathematics or physics topic is given before the corresponding Mathematica
implementation is discussed. These sections are marked as follows:

Mathematical Remark: Special Topic in Mathematics or Physics

A short summary or review of mathematical or physical ideas necessary for the following example(s).
1

From time to time, Mathematica is used to analyze expressions, algorithms, etc. In some cases, results in the
form of English sentences are produced programmatically. To differentiate such automatically generated text
from the main text, in most instances such text is prefaced by “ë” (structurally the corresponding cells are of type
"PrintText" versus "Text" for author-written cells).

Code pieces that either run for quite long, or need a lot of memory, or are tangent to the current discussion are
displayed in the following manner.

MakeInput

mathematicaCodeWhichEitherRunsVeryLongOrThatIsVeryMemoryIntensiveg
OrThatProducesAVeryLargeGraphicOrThatIsASideTrackToTheSubjectUnderg
Discussion
(* with some comments on how the code works *)

To run a code piece like this, just click the Make Input button above it. This will generate the corresponding
input cell that can be evaluated if the reader’s computer has the necessary resources.

The reader is encouraged to add new inputs and annotations to the electronic notebooks. There are two styles for
reader-added material: "ReaderInput" (a Mathematica input style and simultaneously the default style for a
new cell) and "ReaderAnnotation" (a text-style cell type). They are primarily intended to be used in the
Reading environment. These two styles are indented more than the default input and text cells, have a green
left bar and a dingbat. To access the "ReaderInput" and "ReaderAnnotation" styles, press the
(system-dependent) modifier key and 9 and 7, respectively.

0.6.2 References
Because the GuideBooks are concerned with the solution of mathematical and physical problems using Mathemat-
ica and are not mathematics or physics monographs, the author did not attempt to give complete references for
each of the applications discussed [36]. The references cited in the text pertain mainly to the applications under
discussion. Most of the citations are from the more recent literature; references to older publications can be
found in the cited ones. Frequently URLs for downloading relevant or interesting information are given. (The
URL addresses worked at the time of printing and, hopefully, will be still active when the reader tries them.)
References for Mathematica, for algorithms used in computer algebra, and for applications of computer algebra
are collected in the Appendix.

xxxiv Introduction

The references are listed at the end of each chapter in alphabetical order. In the notebooks, the references are
hyperlinked to all their occurrences in the main text. Multiple references for a subject are not cited in numerical
order, but rather in the order of their importance, relevance, and suggested reading order for the implementation
given.

In a few cases (e.g., pure functions in Chapter 3, some matrix operations in Chapter 6), references to the
mathematical background for some built-in commands are given—mainly for commands in which the mathemat-
ics required extends beyond the familiarity commonly exhibited by non-mathematicians. The GuideBooks do not
discuss the algorithms underlying such complicated functions, but sometimes use Mathematica to “monitor” the
algorithms.

References of the form abbreviationOfAScientificField/yearMonthPreprintNumber (such as quant-ph/0012147)
refer to the arXiv preprint server [41], [21], [28] at http://arXiv.org. When a paper appeared as a preprint and
(later) in a journal, typically only the more accessible preprint reference is given. For the convenience of the
reader, at the end of these references, there is a Get Preprint button. Click the button to display a palette
notebook with hyperlinks to the corresponding preprint at the main preprint server and its mirror sites. (Some of
the older journal articles can be downloaded free of charge from some of the digital mathematics library servers,
such as http://gdz.sub.uni-goettingen.de, http://www.emis.de, http://www.numdam.org, and http://dieper.aib.uni-
linz.ac.at.)

0.6.3 Variables Scoping, Input Numbering and Warning Messages
Some of the Mathematica inputs lead intentionally to error messages, infinite loops, and so on, to illustrate the
operation of a Mathematica command. These messages arise in the practical use of Mathematica also
REPHRASE. So, instead of presenting polished and perfected code, the author prefers to illustrate the potential
problems and limitations associated with the use of Mathematica applied to “real life” problems. The one
exception are the spelling warning messages General::spell and General::spell1 that would appear
relatively frequently because “similar” names are used eventually. For easier and less defocused reading, these
messages are turned off in the initialization cells. (When working with the notebooks, this means that the pop-up
window asking the user “Do you want to automatically ??????? all the initialization cells in the notebook ...?”
should be evaluated should always be answered with a “yes”.) For the vast majority of graphics presented, the
picture is the focus, not the returned Mathematica expression representing the picture. That is why the Graphg
ics and Graphics3D output is suppressed in most situations.

To improve the code’s readability, no attempt has been made to protect all variables that are used in the various
examples. This protection could be done with Clear, Remove, Block, Module, With, and others. Not
protecting the variables allows NO FOR for the reader to modify, in a somewhat easier manner, the values and
definitions of variables, and to see the effects of these changes. On the other hand, there may be some interfer-
ence between variable names and values used in the notebooks and those that might be introduced when
experimenting with the code. When readers examine some of the code on a computer, reevaluate sections, and
sometimes perform subsidiary calculations, they may introduce variables that might interfere with ones from the
GuideBooks. To partially avoid this problem, and for the reader’s convenience, sometimesClear[sequenceOf-
Variables]and Remove[sequenceOfVariables] are sprinkled throughout the notebooks. This makes experiment-
ing with these functions easier.

The numbering of the Mathematica inputs and outputs typically does not contain all consecutive integers. Some
pieces of Mathematica code consist of multiple inputs per cell; so, therefore, the line numbering is incremented
by more than just 1. As mentioned, Mathematica should be restarted at every section, or subsection or solution
of an exercise, to make sure that no variables with values get reused. The author also explicitly asks the reader to
restart Mathematica at some special positions inside sections. This removes previously introduced variables,

Introduction xxxv

eliminates all existing contexts, and returns Mathematica to the typical initial configuration to ensure reproduc-
tion of the results and to avoid using too much memory inside one session.

0.6.4 Notations and Symbols
The symbols used in typeset mathematical formulas are not uniform and unique throughout the GuideBooks.
Various mathematical and physical quantities are used repeatedly in this book (like normals, rotation matrices
and field strengths). Frequently the same notation is used for them, but depending on the context, also different
ones are used, e.g. sometimes bold is used for a vector (such as r) and sometimes an arrow (such as r”). Matrices
appear in bold or as doublestruck letters. Depending on the context and emphasis placed, different notations are
used in display equations and in the Mathematica input form. For instance, for a time-dependent scalar quantity
of one variable yHt; xL, we might use one of many patterns, such as ψ[t][x] (for emphasizing a parametric
t-dependence) or ψ[t, x] (to treat t and x on an equal footing) or ψ[t, {x}] (to emphasize the
one-dimensionality of the space variable x).

Mathematical formulas use standard notation. To avoid confusion with Mathematica notations, the use of square
brackets is minimized throughout. Following the conventions of mathematics notation, square brackets are used
for three cases: a) Functionals, such as t@ f HtLD HwL for the Fourier transform of a function f HtL. b) Power series
coefficients, @xkD H f HxLL denotes the coefficient of xk of the power series expansion of f HxL around x = 0. c)
Closed intervals, like @a, bD (open intervals are denoted by Ha, bL). Grouping is exclusively done using parenthe-
ses. Upper-case double-struck letters denote domains of numbers,  for integers,  for nonnegative integers, 
for rational numbers,  for reals, and  for complex numbers. Points in n(or n) with explicitly given coordi-
nates are indicated using curly braces 8c1, …, cn<. The symbols fl and fi for And and Or are used in logical
formulas.

For variable names in formula- and identity-like Mathematica code, the symbol (or small variations of it)
traditionally used in mathematics or physics is used. In program-like Mathematica code, the author uses very
descriptive, sometimes abbreviated, but sometimes also slightly longish, variable names, such as buildBrilg
louinZone and FibonacciChainMap.

0.6.5 Units
In the examples involving concepts drawn from physics, the author tried to enhance the readability of the code
(and execution speed) by not choosing systems of units that involve numerical or unit-dependent quantities. (For
more on the choice and treatment of units, see [37], [4], [5], [10], [13], [11], [12], [34], [33], [29], [35], [42],
[20], [23], [18], [24].) Although Mathematica can carry units along with the symbols representing the physical
quantities in a calculation, this requires more programming and frequently diverts from the essence of the
problem. Choosing a system of units that allows the equations to be written without (unneeded in computations)
units often gives considerable insight into the importance of the various parts of the equations because the
magnitudes of the explicitly appearing coefficients are more easily compared.

xxxvi Introduction

0.6.6 Cover Graphics
The cover graphics of the GuideBooks stem from the Mathematica GuideBooks themselves. The construction
ideas and their implementation are discussed in detail in the corresponding GuideBook.

† The cover graphic of the Programming volume shows 42 tori, 12 of which are in the dodecahedron’s face
planes and 30 which are in the planes perpendicular to the dodecahedron’s edges. Subsections 1.2.5 of Chapter 1
discusses the implementation.

† The cover graphic of the Graphics volume first subdivides the faces of a dodecahedron into small triangles and
then rotates randomly selected triangles around the dodecahedron’s edges. The proposed solution of Exercise 1b
of Chapter 2 discusses the implementation.

† The cover graphic of the Numerics volume visualizes the electric field lines of a symmetric arrangement of
positive and negative charges. Subsection 1.11.1 discusses the implementation.

† The cover graphic of the Symbolics volume visualizes the derivative of the Weierstrass ƒ function over the
Riemann sphere. The “threefold blossoms” arise from the poles at the centers of the periodic array of period
parallelograms. Exercise 3j of Chapter 2 discusses the implementation.

† The four spine graphics show the inverse elliptic nome function q-1, a function defined in the unit disk with a
boundary of analyticity mapped to a triangle, a square, a pentagon, and a hexagon. Exercise 16 of Chapter 2 of
the Graphics volume discusses the implementation.

0.7 Production History
The original set of notebooks was developed in the 1991–1992 academic year on an Apple Macintosh IIfx with
20 MB RAM using Mathematica Version 2.1. Over the years, the notebooks were updated to Mathematica
Version 2.2, then to Version 3, and finally for Version 4 for the first printed edition of the Mathematica Guide-
Books. The electronic component has been updated to be compatible with Mathematica 5. The first step in
creating them was the translation of a set of Macintosh notebooks used for lecturing and written in German into
English by Larry Shumaker. This was done primarily by a translation program and afterward by manually
polishing the English version. Then the notebooks were transformed into TEX files using the program nb2tex
on a NeXT computer. The resulting files were manually edited, equations prepared in the original German
notebooks were formatted with TEX , NO COMMA and macros were added corresponding to the design of the
book. (The translation to TEX was necessary because Mathematica Version 2.2 did not allow for book-quality
printouts.) They were updated and refined for nearly three years, and then Mathematica 3 notebooks were
generated from the TEX files using a preliminary version of the program tex2nb. Historically and technically,
this was an important step because it transformed all of the material of the GuideBooks into Mathematica
expressions and allowed for automated changes and updates in the various editing stages. (Using the Mathemat-
ica kernel allowed one to process and modify the notebook files of these books in a uniform and time-efficient
manner.) Then, the notebooks were expanded in size and scope and updated to Mathematica 4. In the second
half [[of the year]] 2003, the Mathematica programs of the notebooks were revised to work with Mathematica 5.
A special set of styles was created to generate the actual PostScript as printouts from the notebooks. All inputs
were evaluated with this style sheet, and the generated Postscript was directly used for the book production.
Using a little Mathematica program, the index was generated from the notebooks (which are Mathematica
expressions), containing all index entries as cell tags.

Introduction xxxvii

0.8 Four General Suggestions
A reader new to Mathematica should take into account these four suggestions.

† There is usually more than one way to solve a given problem using Mathematica. If one approach does not
work and returns the wrong answer or an error message, make every effort to understand what is happening.
Even if the reader has succeeded with an alternative approach, it is important to try to understand why other
attempts failed.

† Mathematical formulas, algorithms, and so on, should be implemented as directly as possible, even if the
resulting construction is somewhat “unusual” compared to that in other programming languages. In particular,
the reader should not simply translate C, Pascal, Fortran, or other programs line–by-line into Mathematica,
although this is indeed possible. Instead, the reader should instead reformulate the problem in a clear mathemati-
cal way. For example, Do, While, and For loops are frequently unnecessary, convergence (for instance, of
sums) can be checked by Mathematica, and If tests can often be replaced by a corresponding pattern. The
reader should start with an exact mathematical description of the problem [26], [27]. For example, it does not
suffice to know which transformation formulas have to be used on certain functions; one also needs to know how
to apply them. “The power of mathematics is in its precision. The precision of mathematics must be used
precisely.” [17]

† If the exercises, examples, and calculation of the GuideBooks or the listing of calculation proposals from
Exercise 1 of Chapter 1 of the Programming volume are not challenging enough or do not cover the reader’s
interests, consider the following idea, which provides a source for all kinds of interesting and difficult problems:
The reader should select a built-in command and try to reconstruct it using other built-in commands and make it
behave as close to the original as possible in its operation, speed, and domain of applicability, or even to surpass
it. (Replicating the following functions is a serious challenge: N, Factor, FactorInteger, Integrate,
NIntegrate, Solve, DSolve, NDSolve, Series, Sum, Limit, Root, Prime, or PrimeQ.)

† If the reader tries to solve a smaller or larger problem in Mathematica and does not succeed, keep this problem
on a “to-do” list and periodically review this list and try again. Whenever the reader has a clear strategy to solve
a problem, this strategy can be implemented in Mathematica. The implementation of the algorithm might require
some programming skills, and by reading through this book, the reader will become able to code more sophisti-
cated procedures and more efficient implementations. After the reader has acquired a certain amount of Mathemat
ica programming familiarity, implementing virtually all “procedures” which the reader can (algorithmically)
carry out with paper and pencil will become straightforward.

xxxviii Introduction

References
1 P. Abbott. The Mathematica Journal 4, 415 (2000).

2 P. Abbott. The Mathematica Journal 9, 31 (2003).

3 H. Abelson, G. Sussman. Structure and Interpretation of Computer Programs, MIT Press, Cambridge, MA, 1985.

4 G. I. Barenblatt. Similarity, Self-Similarity, and Intermediate Asymptotics, Consultants Bureau, New York, 1979.

5 F. A. Bender. An Introduction to Mathematical Modeling, Wiley, New York, 1978.

6 G. Benfatto, G. Gallavotti. Renormalization Group, Princeton University Press, Princeton, 1995.

7 L. Blum, F. Cucker, M. Shub, S. Smale. Complexity and Real Computation, Springer, New York, 1998.

8 P. Bürgisser, M. Clausen, M. A. Shokrollahi. Algebraic Complexity Theory, Springer, Berlin, 1997.

9 L. Cardelli, P. Wegner. Comput. Surv. 17, 471 (1985).

10 J. F. Carinena, M. Santander in P. W. Hawkes (ed.). Advances in Electronics and Electron Physics 72, Academic
Press, New York, 1988.

11 E. A. Desloge. Am. J. Phys. 52, 312 (1984).

12 C. L. Dym, E. S. Ivey. Principles of Mathematical Modelling, Academic Press, New York, 1980.

13 A. C. Fowler. Mathematical Models in the Applied Sciences, Cambridge University Press, Cambridge, 1997.

14 T. Gannon. arXiv:math.QA/9906167 (1999).

15 R. J. Gaylord, S. N. Kamin, P. R. Wellin. An Introduction to Programming with Mathematica,
TELOS/Springer-Verlag, Santa Clara, 1993.

16 J. Glynn, T. Gray. The Beginner’s Guide to Mathematica Version 3, Cambridge University Press, Cambridge, 1997.

17 D. Greenspan in R. E. Mickens (ed.). Mathematics and Science, World Scientific, Singapore, 1990.

18 G. W. Hart. Multidimensional Analysis, Springer-Verlag, New York, 1995.

19 A. K. Hartman, H. Rieger. arXiv:cond-mat/0111531 (2001).

20 E. Isaacson, M. Isaacson. Dimensional Methods in Engineering and Physics, Edward Arnold, London, 1975.

21 A. Jackson. Notices Am. Math. Soc. 49, 23 (2002).

22 R. D. Jenks, B. M. Trager in J. von zur Gathen, M. Giesbracht (eds.). Symbolic and Algebraic Computation, ACM
Press, New York, 1994.

23 C. Kauffmann in A. van der Burgh (ed.). Topics in Engineering Mathematics, Kluwer, Dordrecht, 1993.

24 R. Khanin in B. Mourrain (ed.). ISSAC 2001, ACM, Baltimore, 2001.

25 P. Kleinert, H. Schlegel. Physica A 218, 507 (1995).

26 D. E. Knuth. Am. Math. Monthly 81, 323 (1974).

27 D. E. Knuth. Am. Math. Monthly 92, 170 (1985).

28 G. Kuperberg. arXiv:math.HO/0210144 (2002).

29 J. D. Logan. Applied Mathematics, Wiley, New York, 1987.

30 K. C. Louden. Programming Languages: Principles and Practice, PWS-Kent, Boston, 1993.

31 R. Maeder. Programming in Mathematica, Addison-Wesley, Reading, 1997.

32 R. Maeder. The Mathematica Programmer, Academic Press, New York, 1993.

33 B. S. Massey. Measures in Science and Engineering, Wiley, New York, 1986.

34 G. Messina, S. Santangelo, A. Paoletti, A. Tucciarone. Nuov. Cim. D 17, 523 (1995).

Introduction xxxix

35 J. Molenaar in A. van der Burgh, J. Simonis (eds.). Topics in Engineering Mathematics, Kluwer, Dordrecht, 1992.

36 E. Pascal. Repertorium der höheren Mathematik Theil 1/1 (page V, paragraph 3), Teubner, Leipzig, 1900.

37 S. H. Romer. Am. J. Phys. 67, 13 (1999).

38 R. Sedgewick, P. Flajolet. Analysis of Algorithms, Addison-Wesley, Reading, 1996.

39 R. Sethi. Programming Languages: Concepts and Constructions, Addison-Wesley, New York, 1989.

40 D. B. Wagner. Power Programming with Mathematica: The Kernel, McGraw-Hill, New York, 1996.

41 S. Warner. arXiv:cs.DL/0101027 (2001).

42 H. Whitney. Am. Math. Monthly 75, 115, 227 (1968).

43 S. Wolfram. The Mathematica Book, Cambridge University Press and Wolfram Media, 1999.

xl Introduction

