
Introduction and Orientation to
The Mathematica GuideBooks

0.1 Overview

0.1.1 Content Summaries
The  Mathematica  GuideBooks  are  published  as  four  independent  books:  The  Mathematica  GuideBook  to
Programming,  The  Mathematica  GuideBook  to  Graphics,  The  Mathematica  GuideBook  to  Numerics,  and  The
Mathematica GuideBook to Symbolics.

†  The  Programming  volume  deals  with  the  structure  of  Mathematica  expressions  and  with  Mathematica  as  a
programming language. This volume includes the discussion of the hierarchical construction of all  Mathematica
objects out  of symbolic expressions (all  of the form head[argument]),  the ultimate building blocks of expres-
sions  (numbers,  symbols,  and  strings),  the  definition  of  functions,  the  application  of  rules,  the  recognition  of
patterns  and  their  efficient  application,  the  order  of  evaluation,  program  flows  and  program  structure,  the
manipulation of lists (the universal container for Mathematica  expressions of all kinds), as well as a number of
topics specific to the Mathematica programming language. Various programming styles, especially Mathematica’
s powerful functional programming constructs, are covered in detail.

†  The Graphics  volume deals with  Mathematica’s  two-dimensional  (2D)  and  three-dimensional  (3D) graphics.
The chapters of this volume give a detailed treatment on how to create images from graphics primitives, such as
points, lines, and polygons. This volume also covers graphically displaying functions given either analytically or
in  discrete  form.  A  number  of  images  from  the  Mathematica  Graphics  Gallery  are  also  reconstructed.  Also
discussed is the generation of pleasing scientific visualizations of functions, formulas, and algorithms. A variety
of such examples are given.

†  The  Numerics  volume  deals  with  Mathematica’s  numerical  mathematics  capabilities—the  indispensable
sledgehammer tools for dealing with virtually any “real life” problem. The arithmetic types (fast machine, exact
integer,  and  rational,  verified  high-precision,  and  interval  arithmetic)  are  carefully  analyzed.  Fundamental
numerical  operations,  such  as compilation  of programs,  numerical  Fourier  transforms,  minimization,  numerical
solution  of  equations,  ordinary/partial  differential  equations  are  analyzed  in  detail  and  are  applied  to  a  large
number of examples in the main text and in the solutions to the exercises. 

†  The  Symbolics  volume  deals  with  Mathematica’s  symbolic  mathematical  capabilities—the  real  heart  of
Mathematica  and  the  ingredient  of  the  Mathematica  software  system  that  makes  it  so  unique  and  powerful.
Structural  and  mathematical  operations  on  systems  of polynomials  are  fundamental  to  many symbolic  calcula-
tions  and  are  covered  in  detail.  The  solution  of  equations  and  differential  equations,  as  well  as  the  classical
calculus  operations  are  exhaustively  treated.  In  addition,  this  volume  discusses  and  employs  the  classical



orthogonal polynomials and special functions of mathematical physics. To demonstrate the symbolic mathemat-
ics power, a variety of problems from mathematics and physics are discussed. 

The  four  GuideBooks  contain  about  25,000  Mathematica  inputs,  representing  more  than  70,000  lines  of  com-
mented Mathematica  code.  (For the reader already familiar with Mathematica,  here is  a more precise measure:
The  LeafCount  of  all  inputs  would  be  about  800,000  when  collected  in  a  list.)  The  GuideBooks  also  have
more than 4,000 graphics, 100 animations, 8,000 references, and 1,000 exercises. More than 10,000 hyperlinked
index entries and hundreds of hyperlinks from the overview sections connect all parts in a convenient way. The
evaluated  notebooks  of all  four  volumes  have a  cumulative  file  size  of  about  10  GB.  Although  these numbers
may sound large, the Mathematica GuideBooks actually cover only a portion of Mathematica’s functionality and
features and give only a glimpse into the possibilities Mathematica  offers to generate graphics, solve problems,
model  systems,  and  discover  new  identities,  relations,  and  algorithms.  The  Mathematica  code  is  explained  in
detail  throughout  all  chapters.  More  than  10,000  comments  are  scattered  throughout  all  inputs  and  code
fragments.

0.1.2 Relation of the Four Volumes
The four volumes of the GuideBooks are basically independent, in the sense that readers familiar with Mathemat-
ica  programming  can  read  any of  the  other  three  volumes.  But  a  solid  working knowledge of  the  main  topics
discussed  in  The  Mathematica  GuideBook  to  Programming—symbolic  expressions,  pure  functions,  rules  and
replacements, list manipulations—is required for the Graphics, Numerics, and Symbolics volumes. Compared to
these three volumes, the Programming volume might appear to be a bit “dry”. But similar to learning a foreign
language,  before  being rewarded  with  the beauty of novels or  a  poem, one has to  sweat  and  study.  The whole
suite of graphical  capabilities and  all of the mathematical  knowledge in  Mathematica  are accessed and applied
through lists, patterns, rules, and pure functions, the material discussed in the Programming volume. 

Naturally,  graphics  are  the  center  of  attention  of  the  The  Mathematica  GuideBook  to  Graphics.  While  in  the
Programming  volume  some  plotting  and  graphics  for  visualization  are  used,  graphics  are  not  crucial  for  the
Programming  volume.  The  reader  can  safely  skip  the  corresponding  inputs  to  follow  the  main  programming
threads.  The Numerics and  Symbolics volumes,  on the  other hand,  make heavy use  of the graphics knowledge
acquired in the Graphics volume. Hence, the prerequisites for the Numerics and Symbolics volumes are a good
knowledge of Mathematica’s programming language and of its graphics system. 

The  Programming  volume  contains  only  a  few  percent  of  all  graphics,  the  Graphics  volume  contains  about
two-thirds,  and  the  Numerics  and  Symbolics  volume,  about  one-third  of  the  overall  4,000+  graphics.  The
Programming  and  Graphics  volume use  some mathematical  commands,  but  they restrict  the  use  to  a  relatively
small number (especially Expand, Factor, Integrate, Solve). And the use of the function N for numerical
ization  is  unavoidable  for  virtually  any  “real  life”  application  of  Mathematica.  The  last  functions  allow us  to
treat some mathematically not uninteresting examples in the Programming and Graphics volumes. In addition to
putting  these  functions  to  work  for  nontrivial  problems,  a  detailed  discussion  of  the  mathematics  functions  of
Mathematica takes place exclusively in the Numerics and Symbolics volumes.

The  Programming  and  Graphics  volumes  contain  a  moderate  amount  of  mathematics  in  the  examples  and
exercises,  and  focus  on  programming  and  graphics  issues.  The  Numerics  and  Symbolics  volumes  contain  a
substantially larger amount of mathematics.

Although printed  as four  books,  the  fourteen individual  chapters (six in  the Programming volume,  three in  the
Graphics volume, two in the Numerics volume, and three in the Symbolics volume) of the Mathematica  Guide-
Books form one organic whole, and the author recommends a strictly sequential reading, starting from Chapter 1
of  the  Programming  volume  and  ending  with  Chapter  3  of  the  Symbolics  volume  for  gaining  the  maximum
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benefit.  The  electronic  component  of  each  book  contains  the  text  and  inputs  from  all  the  four  GuideBooks,
together with a comprehensive hyperlinked index. The four volumes refer frequently to one another.

0.1.3 Chapter Structure
A rough outline of the content of a chapter is the following: 

† The main body discusses the Mathematica functions belonging to the chapter subject, as well their options and
attributes.  Generically,  the author has attempted to  introduce the functions in  a “natural  order”.  But surely one
cannot  be  axiomatic  with  respect  to  the  order.  (Such  an  order  of  the  functions  is  not  unique,  and  the  author
intentionally has “spread out” the introduction of various Mathematica  functions across the four volumes.) With
the introduction of a function, some small examples of how to use the functions and comparisons of this function
with related ones are given. These examples  typically (with the exception of some visualizations in the Program-
ming volume) incorporate functions already discussed. The last section of a chapter often gives a larger example
that makes heavy use of the functions discussed in the chapter. 

†  A  programmatically  constructed  overview  of  each  chapter  functions  follows.  The  functions  listed  in  this
section are hyperlinked to their attributes and options, as well as to the corresponding reference guide entries of
The Mathematica Book. 

†  A  set  of  exercises  and  potential  solutions  follow.  Because  learning  Mathematica  through  examples  is  very
efficient, the proposed solutions are quite detailed and form up to 50% of the material of a chapter.

† References end the chapter.

Note that the first few chapters of the Programming volume deviate slightly from this structure. Chapter 1 of the
Programming volume gives a general overview of the kind of problems dealt with in the four GuideBooks. The
second, third, and fourth chapters of the Programming volume introduce the basics of programming in Mathemat-
ica. Starting with Chapters 5 of the Programming volume and throughout the Graphics, Numerics, and Symbol-
ics volume, the above-described structure applies.

In the 14 chapters of the GuideBooks the author has chosen a “we” style for the discussions of how to proceed in
constructing programs  and carrying out calculations to include the reader tightly.

0.1.4 Code Presentation Style
The typical style of a unit of the main part of a chapter is: Define a new function, discuss its arguments, options,
and attributes,  and then give examples of its usage.  The examples are virtually always Mathematica  inputs and
outputs.  The  majority  of  inputs  is  in  InputForm  are  the  notebooks.  On  occasion  StandardForm  is  also
used. Although StandardForm  mimics classical mathematics notation and makes short inputs more readable,
for “program-like” inputs, InputForm  is typically more readable and easier and more natural to align. For the
outputs,  StandardForm  is  used  by  default  and  occasionally  the  author  has  resorted  to  InputForm  or
FullForm to expose digits of numbers and to TraditionalForm  for some formulas. Outputs are mostly not
programs,  but  nearly always  “results” (often  mathematical  expressions,  formulas,  identities,  or  lists  of numbers
rather than program constructs). The world of Mathematica  users is divided into three groups, and each of them
has a nearly religious opinion on how to format Mathematica code [1], [2]. 

The author follows the InputForm cult(ure) and hopes that the Mathematica users who do everything in either
StandardForm  or TraditionalForm  will bear with him. If the reader really wants to see all code in either
StandardForm  or  TraditionalForm,  this  can  easily  be  done  with  the  Convert  To  item  from the  Cell
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menu. (Note that  the relation between InputForm  and StandardForm  is not  symmetric. The InputForm
cells  of  this  book  have  been  line-broken  and  aligned  by  hand.  Transforming  them  into  StandardForm  or
TraditionalForm  cells works well because one typically does not line-break manually and align Mathemat-
ica  code in these cell types. But converting StandardForm  or TraditionalForm  cells into InputForm
cells results in much less pleasing results.) 

In  the  inputs,  special  typeset  symbols  for  Mathematica  functions  are  typically  avoided  because  they  are  not
monospaced.  But  the  author  does  occasionally  compromise  and  use  Greek,  script,  Gothic,  and  doublestruck
characters. 

In  a  book about  a  programming  language,  two  other  issues  come always  up:  indentation  and  placement of  the
code.
†  The code of the GuideBooks  is  largely consistently formatted and  indented.  There are no strict  guidelines or
even rules  on how to  format and indent  Mathematica  code.  I  hope the reader  will  find the author’s formatting
style  readable.  It  is  a  compromise between  readability (mental  parsabililty)  and  space conservation,  so  that  the
printed version of the Mathematica GuideBook matches closely the electronic version.
† Because of the large number of examples, a rather imposing amount of Mathematica code is presented. Should
this code be present only on the disk, or also in the printed book? If it is in the printed book, should it be at the
position where the code is used or at the end of the book in an appendix? Many authors of Mathematica articles
and books have strong opinions on this subject.  Because the main emphasis of the  Mathematica  GuideBooks  is
on solving  problems with  Mathematica  and not  on the actual  problems,  the GuideBooks  give all of the code at
the point where it is needed in the printed book, rather than “hiding” it in packages and appendices. In addition
to being more straightforward to read and conveniently allowing us to refer to elements of the code pieces, this
placement makes the correspondence between the printed book and the notebooks close to 1:1, and so working
back and forth between the printed book and the notebooks is as straightforward as possible.

0.2 Requirements

0.2.1 Hardware and Software
Throughout the GuideBooks, it is assumed that the reader has access to a computer running a current version of
Mathematica (version 4.0 or newer). For readers without access to a licensed copy of Mathematica, it is possible
to  view  all  of  the  material  on  the  disk  using  MathReader.  (MathReader  is  downloadable  from
www.wolfram.com/mathreader.)

The files  of  the  GuideBooks  are  relatively large,  altogether  more than  10  GB.  This  is  also  the  amount  of  hard
disk  space  needed  to  store  uncompressed  versions  of  the  notebooks.  To  view  the  notebooks  comfortably,  the
reader’s computer needs 64 MB RAM; to evaluate the evaluation units of the notebooks 512 MB RAM or more
is recommended.

In the GuideBooks,  a  large number of animations are generated.  Although  they need more memory than single
pictures, they are easy to create, to animate, and to store on typical year-2003 hardware, and they provide a lot of
joy.
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0.2.2 Reader Prerequisites
Although prior Mathematica  knowledge is not needed to read The Mathematica  GuideBook to Programming, it
is assumed that the reader is familiar with basic actions in the Mathematica  front end, including entering Greek
characters  using  the  keyboard,  copying  and  pasting  cells,  and  so  on.  Freely  available  tutorials  on  these  (and
other) subjects can be found at http://library.wolfram.com.

For  a  complete  understanding  of  most  of  the  GuideBooks  examples,  it  is  desirable  to  have  a  background  in
mathematics,  science,  or  engineering  at  about  the  bachelor’s  level  or  above.  Familiarity  with  mechanics  and
electrodynamics  is  assumed.  Some  examples  and  exercises  are  more  specialized,  for  instance,  from  quantum
mechanics, finite element analysis, statistical mechanics, solid state physics, number theory, and other areas. But
the GuideBooks  avoid very advanced (but tempting) topics such as renormalization groups [6], parquet approxi-
mations [25], and modular moonshines [14]. (Although Mathematica can deal  with such topics, they do not fit
the  character  of  the  Mathematica  GuideBooks  but  rather  the  one  of  a  Mathematica  Topographical  Atlas  [a
monumental work to be carried out by the Mathematica–Bourbakians of the 21st century]). 

Each scientific application discussed has a set of references. The references should easily give the reader both an
overview of the subject and pointers to further references.

0.3 What the GuideBooks Are and What They Are Not

0.3.1 Doing Computer Mathematics
As discussed in the Preface, the main goal of the GuideBooks is to demonstrate, showcase, teach, and exemplify
scientific  problem  solving  with  Mathematica.  An  important  step  in  achieving  this  goal  is  the  discussion  of
Mathematica  functions that allow readers to become fluent in programming when creating complicated graphics
or solving scientific problems.  This again means that  the reader must  become familiar with the most important
programming,  graphics,  numerics,  and  symbolics  functions,  their  arguments,  options,  attributes,  and  a  few  of
their time and space complexities. And the reader must know which functions to use in each situation.

The  GuideBooks  treat  only  aspects  of  Mathematica  that  are  ultimately  related  to  “doing  mathematics”.  This
means that the GuideBooks focus on the functionalities of the kernel rather than on the THOSE ones of the front
end. The knowledge required to use the front end to work with the notebooks can easily be gained by reading the
corresponding chapters of the online documentation of Mathematica. Some of the subjects that are treated either
lightly or not at all in the GuideBooks  include the basic use of Mathematica  (starting the program, features, and
special properties of the notebook front end [16]), typesetting,  the preparation of packages, external  file opera-
tions,  the  communication  of  Mathematica  with  other  programs  via  MathLink,  special  formatting  and  string
manipulations,  computer-  and  operating system-specific  operations,  audio  generation,  and  commands available
in  various  packages.  By  packages,  those  distributed  with  Mathematica  as  well  as  those  available  from Math-
Source  (http://library.wolfram.com/database/MathSource )  and  commercial  sources,  such  as  MathTensor  for
doing  general  relativity  calculations  (http://smc.vnet.net/MathTensor.html)  or  FeynCalc  for  doing  high-energy
physics  calculations  (http://www.feyncalc.com)  are  meant.  This  means,  in  particular,  that  probability  and
statistical  calculations  are  barely  touched  on  because  most  of  the  relevant  commands  are  contained  in  the
packages.  The  GuideBooks  make  little  or  no  mention  of  the  machine-dependent  possibilities  offered  by  the
various  Mathematica  implementations.  For  this  information,  see  the  documentation that  come with  Mathemat-
ica. 
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Mathematical and physical remarks introduce certain subjects and formulas to make the associated Mathematica
implementations  easier  to  understand.  These  remarks  are  not  meant  to  provide  a  deep  understanding  of  the
(sometimes  complicated)  physical  model  or  underlying  mathematics;  some  of  these  remarks  intentionally
oversimplify matters. 

The  reader  should  examine  all  Mathematica  inputs  and  outputs  carefully.  Sometimes,  the  inputs  and  outputs
illustrate  little-known  or  seldom-used  aspects  of  Mathematica  commands.  Moreover,  for  the  efficient  use  of
Mathematica,  it  is  very  important  to  understand  the  possibilities  and  limits  of  the  built-in  commands.  Many
commands in Mathematica  allow different numbers of arguments. When a given command is called with fewer
than  the  maximum  number  of  arguments,  an  internal  (or  user-defined)  default  value  is  used  for  the  missing
arguments. For most of the commands, the maximum number of arguments and default values are discussed.

When solving problems, the GuideBooks  generically use a “straightforward” approach. This means they are not
using  particularly  clever  tricks  to  solve  problems,  but  rather  direct,  possibly  computationally  more  expensive,
approaches. (From time to time, the GuideBooks  even make use of a “brute force” approach.) The motivation is
that when solving new “real life” problems a reader encounters in  daily work, the “right mathematical trick” is
seldom at hand. Nevertheless, the reader can more often than not rely on Mathematica being powerful enough to
often succeed  in  using a  straightforward approach.  But attention is  paid to  Mathematica-specific issues to  find
time-  and  memory-efficient  implementations—something  that  should  be  taken  into  account  for  any  larger
program.

As  already  mentioned,  all  larger  pieces  of  code  in  this  book  have  comments  to  explain  the  individual  steps
carried  out  in  the  calculations.  Many  smaller  pieces  of  code  have  comments  when  needed  to  expedite  the
understanding of how they work. This enables the reader to  easily change and adapt the code pieces presented.
Sometimes,  when  the  translation  from traditional  mathematics  into  Mathematica  is  trivial,  or  when  the  author
wants  to  emphasize  certain  aspects  of  the  code,  we  let  the  code  “speak  for  itself”.  While  paying  attention  to
efficiency,  the  GuideBooks  only  occasionally  go  into  the  computational  complexity  ([8],  [38],  and  [7])  of  the
given implementations. The implementation of very large, complicated suites of algorithms is not the purpose of
the  GuideBooks.  The  Mathematica  packages  included  with  Mathematica  and  the  ones  at  MathSource
(http://library.wolfram.com/database/MathSource)  offer  a  rich  variety  of  self-study  material  on  building  large
programs.  Most  general  guidelines  for  writing  code  for  scientific  calculations  (like  descriptive  variable  names
and modularity of code; see, e.g., [19] for a review) apply also to Mathematica programs.

The  programs  given  in  a  chapter  typically  make  use  of  Mathematica  functions  discussed  in  earlier  chapters.
Using commands from later chapters would sometimes allow for more efficient techniques. Also, these programs
emphasize  the  use  of  commands  from  the  current  chapter.  So,  for  example,  instead  of  list  operation,  from  a
complexity point of view, hashing techniques or tailored data structures might be preferable. All subsections and
sections are “self-contained” (meaning that no other code than the one presented there is needed to evaluate the
subsections and sections). The price for this “self-containedness” is that from time to time some code has to be
repeated  (such  as  manipulating  polygons  or  forming  random  permutations  of  lists)  instead  of  delegating  such
programming constructs to a package. Because this repetition could be construed as boring, the author typically
uses a slightly different implementation to achieve the same goal. 
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0.3.2 Programming Paradigms
In  the  GuideBooks,  the  author  wants  to  show  the  reader  that  Mathematica  supports  various  programming
paradigms and  also  show that,  depending on  the problem under  consideration  and  the  goal  (e.g.,  solution  of a
problem, test of an algorithm, development of a program), each style has its advantages and disadvantages. (For
a  general  discussion  concerning  programming  styles,  see  [3],  [39],  [22],  [30],  [15],  and  [9].)  Mathematica
supports a functional programming style. Thus, in addition to classical procedural programs (which are often less
efficient  and  less  elegant),  programs  using  the  functional  style  are  also  presented.  In  the  first  volume  of  the
Mathematica  GuideBooks,  the  programming style is  usually dictated by the types of commands that  have been
discussed  up  to  that  point.  A  certain  portion  of  the  programs  involve  recursive,  rule-based  programming.  The
choice of programming style is, of course, partially (ultimately) a matter of personal preference. The GuideBooks’
main aim is to explain the operation, limits, and efficient application of the various Mathematica commands. For
certain commands, this dictates a certain style of programming. However, the various programming styles, with
their advantages and disadvantages, are not the main concern of the GuideBooks. In working with Mathematica,
the reader is likely to use different programming styles depending if one wants a quick one-time calculation or a
routine that will be used repeatedly. So, for a given implementation, the program structure may not always be the
most elegant, fastest, or “prettiest”.

The  GuideBooks  are  not  a  substitute  for  the  study  of  The  Mathematica  Book  [43]
http://documents.wolfram.com/v4).  It  is  impossible  to  acquire  a  deeper  (full)  understanding  of  Mathematica
without a thorough study of this book (reading it twice from the first to the last page is highly recommended). It
defines  the language and the spirit of Mathematica.  The reader will probably from time to time need to refer to
parts of it, because not all commands are discussed in the GuideBooks. However, the story of what can be done
with Mathematica  does not  end with the examples shown in The Mathematica Book.  The  Mathematica  Guide-
Books  go  beyond  The  Mathematica  Book.  They  present  larger  programs  for  solving  various  problems  and
creating complicated  graphics.  In  addition,  the  GuideBooks  discuss  a  number  of commands  that  are  not  or  are
only fleetingly mentioned in the manual (e.g., some specialized methods of mathematical functions and functions
from  the  Developer`  and  Experimental`  contexts),  but  which  the  author  finds  important.  In  the  note-
books, the author gives special emphasis to discussions, remarks, and applications relating to several commands
that  are  typical  for  Mathematica  but  not  for  most  other  programming  languages,  e.g.,  Map,  MapAt,  MapIng
dexed,  Distribute,  Apply,  Replace,  ReplaceAll,  Inner,  Outer,  Fold,  Nest,  NestList,
FixedPoint,  FixedPointList,  and  Function.  These  commands  allow  to  write  exceptionally  elegant,
fast, and powerful programs. All of these commands are discussed in The Mathematica Book and others that deal
with programming in Mathematica  (e.g., [31], [32], and [40]). However, the author’s experience suggests that a
deeper understanding of these commands and their optimal applications comes only after working with Mathemat-
ica in the solution of more complicated problems.

Both the printed book and the electronic component contain material that is meant to teach in detail how to use
Mathematica to solve problems, rather than to present the underlying details of the various scientific examples. It
cannot  be  overemphasized  that  to  master  the  use  of  Mathematica,  its  programming  paradigms  and  individual
functions,  the  reader  must  experiment;  this  is  especially  important,  insightful,  easily  verifiable,  and  satisfying
with graphics, which involve manipulating expressions, making small changes, and finding different approaches.
Because the results can easily be visually checked, generating and modifying graphics is an ideal method to learn
programming in Mathematica.
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0.4 Exercises and Solutions

0.4.1 Exercises
Each chapter includes a set of exercises and a detailed solution proposal for each exercise. When possible, all of
the  purely  Mathematica-programming  related  exercises  (these  are  most  of  the  exercises  of  the  Programming
volume)  should  be  solved  by  every  reader.  The  exercises  coming  from mathematics,  physics,  and  engineering
should be solved according to the reader’s interest. The most important Mathematica functions needed to solve a
given problem are generally those of the associated chapter. 

For a rough orientation about the content of an exercise, the subject is included in its title. The relative degree of
difficulty is indicated by level superscript of the exercise number (L1 indicates easy, L2  indicates medium, and L3

indicates  difficult).  The  author’s  aim  was  to  present  understandable  interesting  examples  that  illustrate  the
Mathematica  material  discussed in  the corresponding chapter.  Some exercises were inspired by recent  research
problems; the references given allow the interested reader to dig deeper into the subject. 

The  exercises  are  intentionally  not  hyperlinked  to  the  corresponding  solution.  The  independent  solving  of  the
exercises is an important part of learning Mathematica.

0.4.2 Solutions
The GuideBooks  contain solutions to each of the more than 1,000 exercises. Many of the techniques used in the
solutions are not just one-line calls to built-in functions. It might well be that with further enhancements, a future
version of Mathematica  might  be able to  solve the problem more directly.  (But due to different  forms of some
results returned by Mathematica,  some problems might also become more challenging.) The author encourages
the reader to try to find shorter, more clever, faster (in terms of runtime as well complexity), more general, and
more  elegant  solutions.  Doing  various  calculations  is  the  most  effective  way  to  learn  Mathematica.  A  proper
Mathematica  implementation of a function that solves a given problem often contains many different elements.
The  function(s)  should  have  sensibly  named  and  sensibly  behaving  options;  for  various  (machine  numeric,
high-precision numeric, symbolic) inputs different steps might be required; shielding against inappropriate input
might  be  needed;  different  parameter  values  might  require  different  solution  strategies  and  algorithms,  helpful
error  and  warning  messages  should  be  available.  The  returned  data  structure  should  be  intuitive  and  easy  to
reuse; to achieve a good computational complexity, nontrivial data structures might be needed, etc. Most of the
solutions do not deal with all of these issues, but only with selected ones and thereby leave plenty of room for
more detailed treatments; as far as limit, boundary, and degenerate cases are concerned, they represent an outline
of  how  to  tackle  the  problem.  Although  the  solutions  do  their  job  in  general,  they  often  allow  considerable
refinement and extension by the reader. 

The reader  should  consider the given solution to  a given  exercise as a proposal;  quite different  approaches are
often  possible  and  sometimes  even  more  efficient.  The  routines  presented  in  the  solutions  are  not  the  most
general  possible,  because to  make them foolproof for  every possible input (sensible and nonsensical,  evaluated
and unevaluated, numerical and symbolical), the books would have had to go considerably beyond the mathemati-
cal  and  physical  framework  of  the  GuideBooks.  In  addition,  few  warnings  are  implemented  for  improper  or
improperly used  arguments.  The  graphics  provided  in  the  solutions  are  mostly  subject  to  a  long  list  of  refine-
ments. Although the solutions do work, they are often sketchy and can be considerably refined and extended by
the reader. This also means that the provided solutions to the exercises programs are not always very suitable for
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solving larger classes of problems. To increase their applicability would require considerably more code. Thus, it
is  not  guaranteed that  given  routines  will  work correctly on related problems.  To guarantee this generality and
scalability,  one would have to  protect  the variables  better,  implement formulas for  more general  or  specialized
cases, write functions to accept different numbers of variables, add type-checking and error-checking functions,
and include corresponding error messages and warnings.

To simplify working through the solutions, the various steps of the solution are commented and are not always
not  packed  in  a  Module  or  Block.  In  general,  only  functions  that  are  used  later  are  packed.  For  longer
calculations,  such  as  those  in  some of  the  exercises,  this  was  not  feasible  and  intended.  The  arguments  of  the
functions  are  not  always  checked  for  their  appropriateness  as  is  desirable  for  robust  code.  But,  this  makes  it
easier for the user to test and modify the code.

0.5 The Books Versus the Electronic Components

0.5.1 Working with the Notebooks
Each volume of the  GuideBooks comes with a multiplatform DVD, containing fourteen main notebooks tailored
for  Mathematica  4  and  compatible  with  Mathematica  5.  Each  notebook  corresponds  to  a  chapter  from  the
printed books. (To avoid large file sizes of the notebooks, all animations are located in the Animations directory
and not directly in the chapter notebooks.) The chapters (and so the corresponding notebooks) contain a detailed
description and explanation of the Mathematica  commands needed and used in applications of Mathematica  to
the sciences. Discussions on Mathematica  functions are supplemented by a variety of mathematics, physics, and
graphics examples. The notebooks also contain complete solutions to all exercises. Forming an electronic book,
the notebooks also contain all text, as well as fully typeset formulas, and reader-editable and reader-changeable
input. (Readers can copy, paste, and use the inputs in their notebooks.) In addition to the chapter notebooks, the
DVD  also  includes  a  navigation  palette  and  fully  hyperlinked  table  of  contents  and  index  notebooks.  The
Mathematica  notebooks corresponding to the printed book are fully evaluated. The evaluated chapter notebooks
also come with hyperlinked overviews; these overviews are not in the printed book.

When reading the printed books, it might seem that some parts are longer than needed. The reader should keep in
mind that  the primary tool for  working with the Mathematica  kernel  are Mathematica  notebooks and that  on a
computer  screen  and  there  “length  does  not  matter  much”.  The  GuideBooks  are  basically  a  printout  of  the
notebooks,  which  makes  going  back  and  forth  between  the  printed  books  and  the  notebooks  very  easy.  The
GuideBooks  give  large  examples  to  encourage  the  reader  to  investigate  various  Mathematica  functions  and  to
become  familiar  with  Mathematica  as  a  system  for  doing  mathematics,  as  well  as  a  programming  language.
Investigating Mathematica in the accompanying notebooks is the best way to learn its details.

To  start  viewing  the  notebooks,  open  the  table  of  contents  notebook  TableOfContents.nb.  Mathematica  note-
books can contain hyperlinks, and all entries of the table of contents are hyperlinked. Navigating through one of
the chapters is convenient when done using the navigator palette GuideBooksNavigator.nb. 

When opening a  notebook,  the  front  end  minimizes  the amount  of memory needed to  display the notebook by
loading  it  incrementally.  Depending  on  the  reader’s  hardware,  this  might  result  in  a  slow  scrolling  speed.
Clicking the  “Load  notebook cache” button  of the  GuideBooksNavigator palette speeds  this  up by loading the
complete notebook into the front end.

For  the  vast  majority  of  sections,  subsections,  and  solutions  of  the  exercises,  the  reader  can  just  select  such  a
structural  unit  and  evaluate  it  (at  once)  on  a  year-2003  computer  (¥512  MB  RAM)  typically  in  a  matter  of
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minutes. (On a pre-OSX Macintosh system, it might be necessary to increase the default memory sizes given for
the  Mathematica  kernel  and  the  front  end.)  Some  sections  and  solutions  containing  many  graphics  may  need
hours of  computation time.  Also,  more than 100 pieces of code run hours,  even days.  The inputs that  are very
memory intensive or produce large outputs and graphics are in inactive cells that can be activated by clicking the
adjacent  button.  Because  of  potentially  overlapping  variable  names  between  various  sections  and  subsections,
the author advises the reader not to evaluate an entire chapter at once.

The  Overview Section  of the  chapters  is  set  up  for  a  front  end  and  kernel  running  on  the  same computer  and
having access  to  the same file system. When using a remote  kernel,  the directory specification for the package
Overview.m must be changed accordingly.

References can be conveniently extracted from the main text by selecting the cell(s) that refer to them (or parts of
a cell) and then clicking the “Extract References” button. A new notebook with the extracted references will then
appear.

The  notebooks  contain  color  graphics.  (To  rerender  the  pictures  with  a  greater  color  depth  or  at  a  larger  size,
choose  Rerender  Graphics  from  the  Cell  menu.)  With  some  of  the  used  colors,  black-and-white  printouts
would occasionally give low-contrast  results.  For better  black-and-white printouts of these graphics,  the author
recommends  setting  the  ColorOutput  option  of  the  relevant  graphics  function  to  GrayLevel.  The  note-
books  with  animations  (in  the  printed  book,  animations  are  typically  printed  as  an  array  of  about  10  to  20
individual  graphics)  typically  contain  between  60  and  120  frames.  Rerunning  the  corresponding  code  with  a
large number of frames will allow the reader to generate smoother and longer-running animations.

Because many cell  styles  used  in  the  notebooks  are  unique to  the  GuideBooks,  when  copying expressions  and
cells  from  the  GuideBooks  notebooks  to  other  notebooks,  one  should  first  attach  the  style  sheet  notebook
GuideBooksStylesheet.nb  to  the  destination  notebook,  or  define  the  needed  styles  in  the  style  sheet  of  the
destination notebook.

0.5.2 Reproducibility of the Results
The 14 chapter notebooks contained in the electronic version of the GuideBooks were run under Mathematica  4
on a  2  GHz Intel  Linux computer with  2 GB RAM. They need more than 100 hours of evaluation time.  (This
does not include the evaluation of the currently unevaluatable parts of code after the Make Input buttons.) For
most  subsections  and  sections,  512  MB  RAM  are  recommended  for  a  fast  and  smooth  evaluation  “at  once”
(meaning the reader can select the section or subsection, and evaluate all inputs without running out of memory
or clearing variables) and the rendering of the generated graphic in the front end. Some subsections and sections
need  more  memory  when  run.  To  reduce  these  memory  requirements,  the  author  recommends  restarting  the
Mathematica  kernel  inside  these  subsections  and  sections,  evaluating  the  necessary  definitions,  and  then
continuing. This will allow the reader to evaluate all inputs.

In  general,  regardless  of  the  computer,  with  the  same version  of Mathematica,  the  reader  should  get  the same
results as shown in the notebooks. (The author has tested the code on Sun and Intel-based Linux computers, but
this  does  not  mean  that  some  code might  not  run  as  displayed  (because  of  different  configurations,  stack  size
settings, etc., but the disclaimer from the Preface applies everywhere). If an input does not work on a particular
machine, please inform the author. Some deviations from the results given may appear because of the following:
†  Inputs  involving  the  function  Random[…]  in  some  form.  (Often  SeedRandom  to  allow for  some  kind  of
reproducibility and randomness at the same time is employed.)
†  Mathematica  commands  operating  on  the  file  system of the  computer,  or  make use  of the  type of computer
(such inputs need to be edited using the appropriate directory specifications).
† Calculations showing some of the differences of floating-point numbers and the machine-dependent representa-
tion of these on various computers.
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†  Pictures  using  various  fonts  and  sizes  because  of  their  availability  (or  lack  thereof)  and  shape  on  different
computers.
†  Calculations  involving  Timing  because  of  different  clock  speeds,  architectures,  operating  systems,  and
libraries.
†  Formats  of  results  depending  on  the  actual  window  width  and  default  font  size.  (Often,  the  corresponding
inputs will contain Short.) 

Using anything other than Mathematica  Version 4.0  might  also result  in  different  outputs.  Examples  of results
that change form, but are all mathematically correct and equivalent, are the parameter variables used in underde-
termined systems of linear equations, the form of the results of an integral, and the internal form of functions like
InterpolatingFunction  and  CompiledFunction.  Some  inputs  might  no  longer  evaluate  the  same
way because functions from a package were used and these functions are potentially built-in functions in a later
Mathematica  version.  Mathematica  is  a  very  large  and  complicated  program  that  is  constantly  updated  and
improved. Some of these changes might be design changes, superseded functionality, or potentially regressions,
and  as  a  result,  some  of  the  inputs  might  not  work  at  all  or  give  unexpected  results  in  future  versions  of
Mathematica.

0.6 Style and Design Elements

0.6.1 Text and Code Formatting
The GuideBooks are divided into chapters. Each chapter consists of several sections, which frequently are further
subdivided  into  subsections.  General  remarks  about  a  chapter  or  a  section  are  presented  in  the  sections  and
subsections numbered 0.  (These remarks usually discuss the structure of the following section and give teasers
about  the  usefulness  of  the  functions  to  be  discussed.)  Also,  sometimes  these  sections  serve  to  refresh  the
discussion of some functions already introduced earlier.

Following the style of The Mathematica Book  [43], the GuideBooks  use the following fonts: For the main text,
Times;  for  Mathematica  inputs  and  built-in  Mathematica  commands,  Courier  plain  (like  Plot);  and  for
user-supplied  arguments,  Times  italic  (like  userArgument1).  Built-in  Mathematica  functions  are  introduced  in
the following style:

MathematicaFunctionToBeIntroduced[typeIndicatingUserSuppliedArgument(s)]
is a description of the built-in command MathematicaFunctionToBeIntroduced upon its first 
appearance. A definition of the command, along with its parameters is given. Here, typeIndicatingUserSupplied-
Argument(s) is one (or more) user-supplied expression(s) and may be written in an abbreviated form or in a 
different way for emphasis.

The actual  Mathematica  inputs  and  outputs  appear  in  the  following manner  (as  mentioned  above,  virtually  all
inputs are given in InputForm).

(* A comment. It will be/is ignored as Mathematica input:
   Return only one of the solutions *)  
Last[Solve[{x^2 - y == 1, x - y^2 == 1}, {x, y}]]

When referring in text to variables of Mathematica inputs and outputs,  the following convention is used: Fixed,
nonpattern  variables  (including  local  variables)  are  printed  in  Courier  plain  (the  equations  solved  above  con-
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tained the variables x and y). User supplied arguments to built-in or defined functions with pattern variables are
printed in Times italic. The next input defines a function generating a pair of polynomial equations in x and y.

equationPair[x_, y_] := {x^2 - y == 1, x - y^2 == 1}

x and y are pattern variables (same letters, but different font from the actual code fragments x_ and y_) that can
stand for any argument. Here we call the function equationPair with the two arguments u + v and w - z.

equationPair[u + v, w - z]

Occasionally, explanation about a mathematics or physics topic is given before the corresponding Mathematica
implementation is discussed. These sections are marked as follows:

Mathematical Remark: Special Topic in Mathematics or Physics

A short summary or review of mathematical or physical ideas necessary for the following example(s).
1

From time  to  time,  Mathematica  is  used  to  analyze  expressions,  algorithms,  etc.  In  some cases,  results  in  the
form  of  English  sentences  are  produced  programmatically.  To  differentiate  such  automatically  generated  text
from the main text, in most instances such text is prefaced by “ë” (structurally the corresponding cells are of type
"PrintText" versus "Text" for author-written cells).

Code pieces that either run for quite long, or need a lot of memory, or are tangent to the current discussion are
displayed in the following manner.

MakeInput

mathematicaCodeWhichEitherRunsVeryLongOrThatIsVeryMemoryIntensiveg
OrThatProducesAVeryLargeGraphicOrThatIsASideTrackToTheSubjectUnderg
Discussion
(* with some comments on how the code works *)

To  run a  code piece like  this,  just  click the Make Input  button above it.  This  will  generate  the corresponding
input cell that can be evaluated if the reader’s computer has the necessary resources. 

The reader is encouraged to add new inputs and annotations to the electronic notebooks. There are two styles for
reader-added material: "ReaderInput"  (a Mathematica  input style and simultaneously the default style for a
new cell)  and "ReaderAnnotation"  (a  text-style cell  type).  They are  primarily intended  to  be used  in  the
Reading  environment.  These two styles are indented more than the default  input  and text  cells,  have a green
left  bar  and  a  dingbat.  To  access  the  "ReaderInput"  and  "ReaderAnnotation"  styles,  press  the
(system-dependent) modifier key and 9 and 7, respectively.

0.6.2 References
Because the GuideBooks are concerned with the solution of mathematical and physical problems using Mathemat-
ica  and are not mathematics or physics monographs, the author did not attempt to give complete references for
each of the applications discussed [36]. The references cited in the text pertain mainly to the applications under
discussion.  Most  of  the  citations  are  from  the  more  recent  literature;  references  to  older  publications  can  be
found  in  the  cited  ones.  Frequently  URLs for  downloading  relevant  or  interesting  information  are  given.  (The
URL addresses  worked  at  the  time  of  printing  and,  hopefully,  will  be  still  active  when  the  reader  tries  them.)
References for Mathematica, for algorithms used in computer algebra, and for applications of computer algebra
are collected in the Appendix. 
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The references  are  listed  at  the  end  of each  chapter  in  alphabetical  order.  In  the  notebooks,  the  references  are
hyperlinked to all their occurrences in the main text. Multiple references for a subject are not cited in numerical
order, but rather in the order of their importance, relevance, and suggested reading order for the implementation
given. 

In  a  few  cases  (e.g.,  pure  functions  in  Chapter  3,  some  matrix  operations  in  Chapter  6),   references  to  the
mathematical background for some built-in commands are given—mainly for commands in which the mathemat-
ics required extends beyond the familiarity commonly exhibited by non-mathematicians. The GuideBooks do not
discuss the algorithms underlying such complicated functions, but sometimes use Mathematica  to “monitor” the
algorithms.

References  of  the  form abbreviationOfAScientificField/yearMonthPreprintNumber  (such  as  quant-ph/0012147)
refer  to  the arXiv preprint  server [41],  [21],  [28]  at  http://arXiv.org.  When  a  paper appeared  as a  preprint  and
(later)  in  a  journal,  typically  only  the  more  accessible  preprint  reference  is  given.  For  the  convenience  of  the
reader,  at  the  end  of  these  references,  there  is  a  Get  Preprint  button.  Click  the  button  to  display  a  palette
notebook with hyperlinks to the corresponding preprint at the main preprint server and its mirror sites. (Some of
the older journal articles can be downloaded free of charge from some of the digital mathematics library servers,
such as http://gdz.sub.uni-goettingen.de, http://www.emis.de, http://www.numdam.org, and http://dieper.aib.uni-
linz.ac.at.)

0.6.3 Variables Scoping, Input Numbering and Warning Messages
Some of the Mathematica  inputs lead intentionally to error messages, infinite loops, and so on, to illustrate the
operation  of  a  Mathematica  command.  These  messages  arise  in  the  practical  use  of  Mathematica  also
REPHRASE. So, instead of presenting polished and perfected code, the author prefers to illustrate the potential
problems  and  limitations  associated  with  the  use  of  Mathematica  applied  to  “real  life”  problems.  The  one
exception are the spelling warning messages General::spell  and General::spell1  that would appear
relatively frequently because “similar”  names are  used  eventually.  For easier  and  less defocused  reading,  these
messages are turned off in the initialization cells. (When working with the notebooks, this means that the pop-up
window asking the  user  “Do you  want to  automatically ??????? all  the initialization  cells  in  the notebook ...?”
should be evaluated should always be answered  with a  “yes”.)  For the vast  majority of graphics presented,  the
picture is the focus, not the returned Mathematica  expression representing the picture. That is why the Graphg
ics and Graphics3D output is suppressed in most situations. 

To improve the code’s readability, no attempt has been made to protect all variables that are used in the various
examples.  This  protection  could  be  done  with  Clear,  Remove,  Block,  Module,  With,  and  others.  Not
protecting the variables allows NO FOR for the reader to modify, in a somewhat easier manner, the values and
definitions of variables, and to see the effects of these changes. On the other hand, there may be some interfer-
ence  between  variable  names  and  values  used  in  the  notebooks  and  those  that  might  be  introduced  when
experimenting with the code.  When readers examine some of the code on a computer,  reevaluate sections, and
sometimes perform subsidiary calculations, they may introduce variables that might interfere with ones from the
GuideBooks.  To partially avoid this problem, and for the reader’s convenience, sometimesClear[sequenceOf-
Variables]and Remove[sequenceOfVariables] are sprinkled throughout the notebooks. This makes experiment-
ing with these functions easier.

The numbering of the Mathematica  inputs and outputs typically does not contain all consecutive integers. Some
pieces of Mathematica  code consist of multiple inputs per cell; so, therefore, the line numbering is incremented
by more than just 1. As mentioned, Mathematica  should be restarted at every section, or subsection or solution
of an exercise, to make sure that no variables with values get reused. The author also explicitly asks the reader to
restart  Mathematica  at  some  special  positions  inside  sections.  This  removes  previously  introduced  variables,
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eliminates all existing contexts, and returns Mathematica  to the typical initial configuration to ensure reproduc-
tion of the results and to avoid using too much memory inside one session. 

0.6.4 Notations and Symbols
The  symbols  used  in  typeset  mathematical  formulas  are  not  uniform  and  unique  throughout  the  GuideBooks.
Various  mathematical  and  physical  quantities  are  used  repeatedly in  this  book (like  normals,  rotation  matrices
and field strengths). Frequently the same notation is used for them, but depending on the context, also different
ones are used, e.g. sometimes bold is used for a vector (such as r) and sometimes an arrow (such as r”). Matrices
appear in bold or as doublestruck letters. Depending on the context and emphasis placed, different notations are
used in display equations and in the Mathematica  input form. For instance, for a time-dependent scalar quantity
of  one  variable  yHt; xL,  we  might  use  one  of  many  patterns,  such  as  ψ[t][x]  (for  emphasizing  a  parametric
t-dependence)  or  ψ[t,  x]  (to  treat  t  and  x  on  an  equal  footing)  or  ψ[t,  {x}]  (to  emphasize  the
one-dimensionality of the space variable x).

Mathematical formulas use standard notation. To avoid confusion with Mathematica  notations, the use of square
brackets is minimized throughout. Following the conventions of mathematics notation, square brackets are used
for three cases: a) Functionals, such as t@ f HtLD HwL for the Fourier transform of a function f HtL. b) Power series
coefficients,  @xkD H f HxLL  denotes  the  coefficient  of  xk  of  the  power  series  expansion  of  f HxL  around  x = 0.  c)
Closed intervals, like @a, bD (open intervals are denoted by Ha, bL). Grouping is exclusively done using parenthe-
ses. Upper-case double-struck letters denote domains of numbers,  for integers,   for nonnegative integers, 
for rational numbers,  for reals, and  for complex numbers. Points in n(or n) with explicitly given coordi-
nates  are  indicated  using  curly  braces  8c1, …, cn<.  The  symbols  fl  and  fi  for  And  and  Or  are  used  in  logical
formulas.

For  variable  names  in  formula-  and  identity-like  Mathematica  code,   the  symbol  (or  small  variations  of  it)
traditionally  used  in  mathematics  or  physics  is  used.  In  program-like  Mathematica  code,  the  author  uses  very
descriptive, sometimes abbreviated, but sometimes also slightly longish, variable names, such as buildBrilg
louinZone and FibonacciChainMap.

0.6.5 Units
In the examples involving concepts drawn from physics, the author tried to  enhance the readability of the code
(and execution speed) by not choosing systems of units that involve numerical or unit-dependent quantities. (For
more on the choice and treatment of units,  see [37], [4], [5], [10], [13], [11], [12], [34], [33], [29], [35], [42],
[20], [23], [18], [24].) Although Mathematica  can carry units along with the symbols representing the physical
quantities  in  a  calculation,  this  requires  more  programming  and  frequently  diverts  from  the  essence  of  the
problem. Choosing a system of units that allows the equations to be written without (unneeded in computations)
units  often  gives  considerable  insight  into  the  importance  of  the  various  parts  of  the  equations  because  the
magnitudes of the explicitly appearing coefficients are more easily compared.
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0.6.6 Cover Graphics
The  cover  graphics  of  the  GuideBooks  stem  from the  Mathematica  GuideBooks  themselves.  The  construction
ideas and their implementation are discussed in detail in the corresponding GuideBook. 

†  The  cover  graphic  of  the  Programming  volume  shows  42  tori,  12  of  which  are  in  the  dodecahedron’s  face
planes and 30 which are in the planes perpendicular to the dodecahedron’s edges. Subsections 1.2.5 of Chapter 1
discusses the implementation.

† The cover graphic of the Graphics volume first subdivides the faces of a dodecahedron into small triangles and
then rotates randomly selected triangles around the dodecahedron’s edges. The proposed solution of Exercise 1b
of Chapter 2 discusses the implementation.

†  The  cover  graphic  of  the  Numerics  volume visualizes  the  electric  field  lines  of  a  symmetric  arrangement  of
positive and negative charges.  Subsection 1.11.1 discusses the implementation.

†  The  cover  graphic  of  the  Symbolics  volume visualizes  the  derivative  of the  Weierstrass  ƒ  function  over  the
Riemann  sphere.  The  “threefold  blossoms”  arise  from  the  poles  at  the  centers  of  the  periodic  array  of  period
parallelograms. Exercise 3j of Chapter 2 discusses the implementation.

† The four spine graphics show the inverse elliptic nome function q-1, a function defined in the unit disk with a
boundary of analyticity mapped to a triangle, a square, a pentagon, and a hexagon. Exercise 16 of Chapter 2 of
the Graphics volume discusses the implementation.

0.7 Production History
The original set of notebooks was developed in the 1991–1992 academic year on an Apple Macintosh IIfx with
20  MB  RAM  using  Mathematica  Version  2.1.  Over  the  years,  the  notebooks  were  updated  to  Mathematica
Version 2.2, then to Version 3, and finally for Version 4 for the first printed edition of the Mathematica  Guide-
Books.  The  electronic  component  has  been  updated  to  be  compatible  with  Mathematica  5.  The  first  step  in
creating them was the translation of a set of Macintosh notebooks used for lecturing and written in German into
English  by  Larry  Shumaker.  This  was  done  primarily  by  a  translation  program  and  afterward  by  manually
polishing the English version. Then the notebooks were transformed into TEX   files using the program nb2tex
on  a  NeXT  computer.  The  resulting  files  were  manually  edited,  equations  prepared  in  the  original  German
notebooks were formatted with TEX  , NO COMMA and macros were added corresponding to the design of the
book. (The translation to  TEX  was necessary because Mathematica  Version 2.2 did not allow for book-quality
printouts.)  They  were  updated  and  refined  for  nearly  three  years,  and  then  Mathematica  3  notebooks  were
generated from the TEX   files using a preliminary version of the program tex2nb. Historically and technically,
this  was  an  important  step  because  it  transformed  all  of  the  material  of  the  GuideBooks  into  Mathematica
expressions and allowed for automated changes and updates in the various editing stages. (Using the Mathemat-
ica  kernel allowed one to process and modify the notebook files of these books in a uniform and time-efficient
manner.)  Then,  the  notebooks  were  expanded  in  size  and  scope and  updated  to  Mathematica  4.  In  the  second
half [[of the year]] 2003, the Mathematica programs of the notebooks were revised to work with Mathematica 5.
A special set of styles was created to generate the actual PostScript as printouts from the notebooks. All inputs
were  evaluated  with  this  style  sheet,  and  the  generated  Postscript  was  directly  used  for  the  book  production.
Using  a  little  Mathematica  program,  the  index  was  generated  from  the  notebooks  (which  are  Mathematica
expressions), containing all index entries as cell tags. 
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0.8 Four General Suggestions
A reader new to Mathematica should take into account these four suggestions.

†  There  is  usually more than  one way to  solve a  given  problem using Mathematica.  If  one approach  does  not
work  and  returns  the  wrong  answer  or  an  error  message,  make  every  effort  to  understand  what  is  happening.
Even  if  the  reader  has  succeeded  with  an  alternative  approach,  it  is  important  to  try  to  understand  why other
attempts failed.

†  Mathematical  formulas,  algorithms,  and  so  on,  should  be  implemented  as  directly  as  possible,  even  if  the
resulting construction  is  somewhat  “unusual”  compared  to  that  in  other  programming  languages.  In  particular,
the  reader  should  not  simply  translate  C,  Pascal,  Fortran,  or  other  programs  line–by-line  into  Mathematica,
although this is indeed possible. Instead, the reader should instead reformulate the problem in a clear mathemati-
cal  way.  For  example,  Do,  While,  and  For  loops  are  frequently  unnecessary,  convergence  (for  instance,  of
sums)  can  be  checked  by  Mathematica,  and  If  tests  can  often  be  replaced  by  a  corresponding  pattern.  The
reader  should  start  with  an  exact  mathematical  description of the problem [26],  [27].  For  example,  it  does  not
suffice to know which transformation formulas have to be used on certain functions; one also needs to know how
to  apply  them.  “The  power  of  mathematics  is  in  its  precision.  The  precision  of  mathematics  must  be  used
precisely.” [17] 

†  If  the  exercises,  examples,  and  calculation  of  the  GuideBooks  or  the  listing  of  calculation  proposals  from
Exercise  1  of  Chapter  1  of  the  Programming  volume are  not  challenging  enough  or  do  not  cover  the  reader’s
interests, consider the following idea, which provides a source for all kinds of interesting and difficult problems:
The reader should select a built-in command and try to reconstruct it using other built-in commands and make it
behave as close to the original as possible in its operation, speed, and domain of applicability, or even to surpass
it.  (Replicating  the  following  functions  is  a  serious  challenge:  N,  Factor,  FactorInteger,  Integrate,
NIntegrate, Solve, DSolve, NDSolve, Series, Sum, Limit, Root, Prime, or PrimeQ.)

† If the reader tries to solve a smaller or larger problem in Mathematica and does not succeed, keep this problem
on a “to-do” list and periodically review this list and try again. Whenever the reader has a clear strategy to solve
a problem, this strategy can be implemented in Mathematica. The implementation of the algorithm might require
some programming skills, and by reading through this book, the reader will become able to code more sophisti-
cated procedures and more efficient implementations. After the reader has acquired a certain amount of Mathemat
ica  programming  familiarity,  implementing  virtually  all  “procedures”  which  the  reader  can  (algorithmically)
carry out with paper and pencil will become straightforward.
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